Chapter 9
Making Capital Investment Decisions

Relevant Cash Flows
• The cash flows that should be included in a capital budgeting analysis are those that will only occur if the project is accepted
• These cash flows are called incremental cash flows
• The stand-alone principle allows us to analyze each project in isolation from the firm simply by focusing on incremental cash flows

Asking the Right Question
• You should always ask yourself “Will this cash flow change ONLY if we accept the project?”
 – If the answer is “yes,” it should be included in the analysis because it is incremental
 – If the answer is “no,” it should not be included in the analysis because it is not affected by the project
 – If the answer is “part of it,” then we should include the part that occurs because of the project

Common Types of Cash Flows
• Sunk costs – costs that have accrued in the past
• Opportunity costs – costs of lost options
• Side effects
 – Positive side effects – benefits to other projects
 – Negative side effects – costs to other projects
• Changes in net working capital
• Financing costs
• Taxes

Pro Forma Statements and Cash Flow
• Capital budgeting relies heavily on pro forma accounting statements, particularly income statements
• Computing cash flows – refresher
 – Operating Cash Flow (OCF) = EBIT + depreciation – taxes
 – OCF = Net income + depreciation when there is no interest expense
 – Cash Flow From Assets (CFFA) = OCF – net capital spending (NCS) – changes in NWC

The Tax Shield Approach
• You can also find operating cash flows, using the tax shield approach
• OCF = (Sales – costs)(1 – T) + Depreciation*T
• This form may be particularly useful when the major incremental cash flows are the purchase of equipment and the associated depreciation tax shield – such as when you are choosing between two different machines
Depreciation
- The depreciation expense used for capital budgeting should be the depreciation schedule required by the IRS for tax purposes
- Depreciation itself is a non-cash expense; consequently, it is only relevant because it affects taxes
- Depreciation tax shield = DT
 - D = depreciation expense
 - T = marginal tax rate

Computing Depreciation
- Straight-line depreciation
 - \(D = \frac{\text{initial cost} - \text{salvage}}{\text{number of years}} \)
 - Very few assets are depreciated straight-line for tax purposes
- MACRS
 - Need to know which asset class is appropriate for tax purposes
 - Multiply percentage given in table by the initial cost
 - Depreciate to zero
 - Mid-year convention

After-tax Salvage
- If the salvage value is different from the book value of the asset, then there is a tax effect
- Book value = initial cost – accumulated depreciation
- After-tax salvage = salvage – \(T(\text{salvage} - \text{book value}) \)

Replacement Problem – Computing Cash Flows
- Remember that we are interested in incremental cash flows
- If we buy the new machine, then we will sell the old machine

Scenario Analysis
- What happens to the NPV under different cash flows scenarios?
- At the very least look at:
 - Best case – revenues are high and costs are low
 - Worst case – revenues are low and costs are high
 - Measure of the range of possible outcomes
- Best case and worst case are not necessarily probable; they can still be possible

Sensitivity Analysis
- What happens to NPV when we vary one variable at a time
- This is a subset of scenario analysis where we are looking at the effect of specific variables on NPV
- The greater the volatility in NPV in relation to a specific variable, the larger the forecasting risk associated with that variable and the more attention we want to pay to its estimation
Capital Rationing

• Capital rationing occurs when a firm or division has limited resources
 – Soft rationing – the limited resources are temporary, often self-imposed
 – Hard rationing – capital will never be available for this project
• The profitability index is a useful tool when faced with soft rationing