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ABSTRACT 

Mean-reversion of spreads follows directly from an error correction quote adjustment process 

plus a random walk theory of the quote midpoint as an implicit efficient price.  In such a 

model, buys and sells are equally likely, and the trade direction is informationless.  With 

asymmetric information and strategic trading, however, order flow is serially correlated, and 

the spread incorporates a time-varying adverse selection component that conditions on trade 

direction (or more generally, on order flow imbalance).  We test the mean reversion of trade-

to-trade spreads for every NYSE stock for each year 1993-2006 and find that tick size 

reduction in 1997 and 2001 substantially reduced the incidence of mean-reverting NYSE 

spreads.  We attribute this growing non-stationarity of spreads to “legging” in the bid and ask 

quotes, and relate the reduced resiliency of the NYSE book to arbitrage threshold bounds 

relative to the radically declining tick size.  In addition, we show that mean-reversion tests are 

very sensitive to lag structure misspecification and evaluate three approaches to selecting an 

optimal lag structure.   (KEYWORDS: spread, mean-reversion, stationarity, tick size)
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1.1 Introduction 

The trading behavior of market makers and institutional participants in modern capital 

markets is pivotally affected by the stochastic properties of the data generating process for 

asset prices. For example, it is well-known that, apart from regulatory affirmative obligations, 

both market makers and several types of liquidity suppliers seek net neutral positions (“go 

flat”) when markets begin to trend but otherwise, in mean-reverting markets, are quite content 

to take inventory risk and earn the quoted spread.  Whether or not security prices mean-revert 

therefore determines in large part whether liquidity providers are active or temporarily move 

to the sidelines.  Their decision has immediate implications for the availability of liquidity 

and thereby for the largest component of execution costs, the quoted bid-ask spread.  

Detecting in real time whether a particular security price is mean-reverting or not is 

both an art and a science.  Practitioner knowledge of this matter is broad and deep, state-of-

the-art, and insightful.  In this paper, we investigate the importance of specifying an optimal 

lag structure for the detection of mean reversion in thickly-traded U.S. equity markets.   

Using trade-to-trade data for the period 1993-2006, we document and then offer an 

explanation for the growing non-stationarity of quoted price midpoints and quoted spreads.  

Two radical reductions in minimum tick size from eighths to sixteenths in 1997 and from 

sixteenths to pennies in 2001 play a key role in our analysis.  In short, the massive erosion of 

minimum tick size has markedly reduced one expense of executing a round trip transaction 

but has imposed an unfortunate consequence – i.e., the collapse of depth posted at the BBO.  

The resulting increase in price impact, as larger orders no longer find sufficient counterparties 

at the BBO but instead “walk the book,” is directly related to the increased incidence of non-

stationary spreads. 
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1.2 Related Literature 

 Several existent methods are available for distinguishing stochastic trends in 

economic and financial time series where the data generating process contains a unit root 

from mean-reverting series with possible deterministic trends or structural breaks.  The most 

widely-adopted is the augmented Dickey-Fuller test statistic, a non-normal distribution for 

testing the autoregressive parameter in AR(p) models (Dickey and Fuller 1979,1981).  If the 

autoregressive coefficient rho in detrended AR(1) models or the sum of the autoregressive 

coefficients tau in detrended AR(p) models is insignificantly different from 1.0, the series is 

non-stationary exhibiting unit roots and stochastic trends.  Such a series does not mean-revert 

and instead exhibits non-constant variance, growing through time.   If one can reject the null 

hypothesis of a unit root (H0: ρ = 1) against a one-tailed alternative in the first differences – 

i.e., HA: (ρ - 1) < 0, 

 ∆Pt  =     α   +   λ t   +   (ρ - 1) Pt-1    +   ∑ β i ∆Pt – i   +   ν t               (1) 

the price series is dynamically stable, and its detrended version does mean-revert. 

Numerous pivotal complications arise in this testing.   First, unit root and mean-

reversion testing must be conditioned on pretesting for deterministic time trends and drift.  

Perron (1988) and Enders (1995 and 2004, pp. 207-214) present nested ADF tests of equation 

(1) that accommodate the possible inclusion of drift α and a deterministic time trend t in the 

d.g.p.  Harris (1995) cautions that detrending a trend stationary d.g.p. or misspecifying a drift 

term in a simple random walk reduces the power of the Dickey-Fuller statistic and increases 

the probability that a false hypothesis of a unit root will be accepted.  If one initially fails to 

reject the unit root null, testing continues to the more restricted specifications without 

deterministic trends or drift and only then should the null hypothesis of a unit root be 

accepted. 
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Secondly, Schwert (1989) investigates the presence of learning behavior with moving 

average effects -- i.e., with parametric influence on pricing of serially uncorrelated prior error 

disturbances ν t-1 as in (2),   

        ∆Pt  =  α   +   λ t   +   (ρ - 1) Pt-1    +   ∑ β t ∆Pt – i   +   θ ν t-1   +    ν t      (2) 

where ν t ~ i.i.d. N(0, σ2).  Simulating Dickey-Fuller and other tests for mixed auto-regressive 

integrated moving average models, Schwert’s Monte Carlo experiments show that ARIMA 

(1, 0, 1) models lead to numerous false negatives (overrejecting unit root processes) as the 

moving average parameter θ approaches the autoregressive parameter ρ.  With smaller 

positive or negative θ, the augmented Dickey-Fuller test leads to valid inference.  For quoted 

prices and spreads, because ρ ≈ 1 and θ could be as large as 0.8 or 0.9, one approach is to 

estimate the ARIMA model to assess the magnitude of θ before proceeding to unit root tests.   

Third, deterministic seasonal patterns or regime changes (structural breaks) in an 

otherwise covariance stationary d.g.p. can be difficult to distinguish from the non-stationarity 

of a unit root process.  Gordon and St Amour (2000) showed that shifts in risk-aversion alone 

can trigger hidden Markov model (HMM) regime switching in stock returns.  Timmermann 

(2001) derived skewness, kurtosis, volatility clustering, and positive serial correlation in stock 

returns from HMM regime switching of dividends.  Empirical evidence of HMM regime 

switching does arise in monthly stock returns that otherwise appear to random walk (Hardy 

2001).  In a parallel paper, we investigate the possibility of HMM regime switching for daily 

stock prices (Harris, Wood, Zhao 2007).  Intraday stock price data (the subject of the current 

paper) does not appear to exhibit structural breaks. 
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Finally, valid statistical inference in VAR models is entirely dependent on specifying 

an autoregressive lag structure that matches the dynamics of adjustment in the data generating 

process.  Too few lags results in autocorrelation of the error terms which affects the  

distributions of the ADF test statistics and thus invalidates inference. Too many lags results in 

reduced power of the ADF test, underrejecting the null hypothesis of a unit root when it is 

false.   

Ng and Perron (1995) recommend a general-to-specific lag structure test, beginning 

with a generously chosen kmax autoregressive lag in an ADF model and truncating and 

reestimating if that longest lag (which we refer to as the longest “continuous lag”) fails to 

meet conventional critical values.  Harris (1992) showed that minimizing the Akaike 

information criterion (AIC) is a satisfactory method for picking the longest continuous lag 

structure.  In the empirical work that follows, we compare and contrast the unit root 

inferences for intraday stock prices under three competing specifications of the lag structure  

-- ten lags, longest AIC-minimizing continuous lags, and optimal lags where the latter 

minimizes the AIC across all possible continuous and discontinuous lag structures.  

  The rationale for our ‘optimal lag’ structure can be understood in terms of equation 

(1).  Suppose that the coefficient β2 on ∆Pt-2 is highly significant whileβ1 is clearly not 

significant. A researcher would want to include ∆Pt-2 in the Dickey-Fuller test to control for 

serial correlation. However, the general-to-specific method of using continuous lags entails a 

loss of power since an unnecessary coefficient is included in the testing regression. An F-test 

for the joint significance of both coefficients is also inappropriate since only β2 belongs in the 

regression. The use of the AIC to select the specific lagged terms to include in the regression 

allows us to balance the need to control for serial dependence with the need to maintain the 

power of the Dickey-Fuller testing methodology.   
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2.  Hypothesis Development 

We begin by assuming that the sequence of quote midpoints mt is an implicit efficient 

(semi-martingale) price of the security Pt plus a mean-zero tracking error εt.  Pt evolves as a 

simple random walk Pt = Pt-1  +  ut where the ut ~ i.i.d.(0, σ 2
u ) may be thought of as 

common value information arrivals with a mean-zero expectation.  The quote midpoint may 

therefore be written                          .   

(3)   mt = mt-1  +  ut  +   εt = ∑ ut   +   εt . 

The dynamic properties of this quote midpoint clearly depend upon the autocovariance Cov 

(εt , εt-1) and the covariance Cov (ut , εt).    Provisionally, we assume εt ~ i.i.d.(0, σ 2
E ) and  

Cov (ut , εt) = 0. 

Dealers and other market makers add to this midpoint a half spread c (interpreted as a 

minimum transaction cost recovery in competitive dealer markets with no asymmetric 

information) to set the transaction price at the ask Pa quoted for buy orders (qt = +1) and at 

the bid Pb quoted for sell orders (qt = -1).  With buys and sells assumed to be equally likely 

and therefore an order flow indicator qt that is informationless, as in the Roll (1984) model, 

we have: 

  (4)   Pa,t   =   mt  +   c qt          and    Pb,t   =   mt  -   c qt   

Quotes Pa and Pb in (4) are difference stationary I(1) sequences drifting up or down together 

based on a permanent common factor component  (the cumulative information arrivals ∑ ut ) 

and a transitory common tracking error εt in the quote midpoint.  Evaluating the difference of 
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the ask quote minus the bid quotes causes both common factors to cancel out, leaving a 

constant quoted half-spread equal to c.  These stylized facts and simplistic assumptions lead 

to the following hypothesis. 

 HA: The ask-bid spread is a covariance-stationary sequence. 

Of course, there are a number of objections to the assumptions underlying HA that 

suggest some refinements could prove useful in developing a testable competing hypothesis.1  

First, empirical quoted spreads exhibit apparently stochastic variation; yet, spreads in (4) are 

a parametric constant.  We hypothesize instead that with information asymmetry and strategic 

trading by informed traders who have advance access to common value knowledge, spreads 

are time-varying.  Second, at any point in time, buys and sells are not equally likely.  Buys 

follow buys; sells follow sells Cov (qt, qt-1) > 0.  That is, qt is itself a stochastic order flow 

indicator variable, not a parameter.  Third, Cov (qt, ut) ≠ 0; an imbalance of buys reflects one 

state of the information conditions in the market; a sequence of sells reflects another.   As a 

result, spreads should incorporate a time-varying adverse selection component λ that is 

triggered by the order flow indicator variable qt. The equilibrium λ just recovers a liquidity 

provider or market maker’s expected net losses as counterparty to informed traders minus his 

or her gains as counterparty to liquidity traders. 

Hasbrouck (2007, chap 8) suggests the following timing.  When information ut  

arrives, the quote midpoint is first updated mt =  mt-1  +  ut  to reflect the new public 

information, and the market maker sets a symmetrical pair of tentative quotes for small size 

around that updated midpoint Pa,t = mt   +  cqt .  Then, when an order arrives (or cumulating 

                                                 
1 Most finance academics have covariance stationarity of the spread as their prior.  However, we assign this a 
priori reasoning to the alternative hypothesis (HA) because the ADF statistical tests of stationarity are set up to 
reject or fail to reject unit roots as the null hypothesis.   
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across a multi-order time interval, when an order imbalance of a particular size appears), 

market makers add a time-varying adverse selection component λtqt to the previous midpoint 

as in Glosten (1987), 

(5)   mt = ( mt-1  +  ut  +  λtqt ),  

thereby identifying the transaction price, 

(6)  Pt = mt    +   cqt . 

  Campbell, Lo, and MacKinlay (1997, section 3.2) emphasize two important 

differences that distinguish this Glosten framework from the Roll framework underlying H0.  

Taking the first differences of (6) and using (5) rather than (3) yields  

(7)  ∆Pt = ut  +  λtqt  +  ( cqt  -   cqt-1). 

Trade-to-trade security returns should exhibit transitory shocks ut and negative serial 

correlation because of the mean-reversion that arises from bid-ask bounce, as qt  and  qt-1 

reverse signs.  In contrast, the adverse selection term λtqt is time-varying but always positive, 

does not mean revert, and in that sense is permanent.  Consequently, the half-spread S t 

(8) S t  =  λt    +    c  

is time-varying and potentially non-stationary because of the dependence of λt on order flow 

imbalances.   

Bertsimas and Lo (1998) also posit a model of quote midpoints that drift with the 

beliefs of strategic trader agents about order flow imbalance.  The tracking error εt in mt (see 

equation (3)) is another way to motivate time-varying spreads that potentially are non-

stationary because of possible correlation between εt and the order flow imbalances triggered 

by public information arrivals ut.  We therefore hypothesize, 
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 H0: The ask-bid spread is a non-stationary sequence. 

In the next section, we investigate the importance of optimal lag length in testing these 

hypotheses about these dynamic properties of the spread and provide an explanation for the 

non-stationarity and lack of time-scale invariance in recent data. 

Engle and Patton (2004) model the log bid price quotes and the log ask price quotes as 

a VECM system with log spreads as a mean-reverting I(0) error correction term.  Consistent 

with HA above, they were able to confirm the stationarity of spreads for 100 NYSE stocks 

from a stratified random sample in 1997-1998 using ten lags and ADF test statistics at alpha 

= 0.01.  Our results reported below show however that, starting in 1998, some NYSE spreads 

began to exhibit I(1) stochastic trends and thereafter spread series are neither time scale 

invariant nor stationary.  

 

3.  Empirical Results 

3.1 Arbitrage Thresholds and the Tick Size 

The two-step reduction in minimum tick sizes in the years 1997 and 2001 has had a 

profound effect on the incidence of mean-reverting quote sequences.  Table 1 shows that in 

Dow Jones Industrial Average (DJIA) stocks in 1996 at one-eighth minimum tick size, 200 

quotes required 10,173 seconds, approximately one quote per minute.  With this much time to 

identify counterparties and execute against standing offers, depth at the best bid and offer 

(BBO) exceeded depths elsewhere on the book.  Huge volume at the BBO was posted as 

market-makers earned this exceptionally wide spread on bid-ask bounce. Consequently, 

relatively few orders from liquidity traders seeking to sector rebalance their insurance 

company portfolios or mutual funds responding to redemption demand were of sufficient size 

to exhaust immediate liquidity supply at the BBO.  Hence, in such information-neutral states 
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of the market, not many orders needed to walked up or down one-side of the book, increasing 

the spread in a so-called “legging” pattern, in order to execute.    

However, when a major order imbalance did widen the spread by the enormous 

$0.125 tick (relative to the $0.01 minimum tick size today), limit order placers almost always 

quickly refreshed the book, resulting in a very high incidence of mean-reversion to a 1/8th 

spread.  Table 2 displays the percentage of quote sequences that were mean-reverting with 

three types of lag structures, with five intervals of time aggregation for each of fourteen years 

from 1993-2006.  It shows that over the last years of the 1/8th tick size (1993-1996) in 150 

quote sequences of DJIA stocks estimated with optimal lag structures, no fewer than 99.8% 

of the spread sequences mean-reverted.  In 75 quote sequences, no fewer than 96.7% mean-

reverted.  To put it in arbitrage terms, whenever liquidity suppliers saw orders walk the book 

by as much as an 1/8th, they presumed that the quote midpoint had moved beyond the 

arbitrage trading threshold bounds on the minimum efficient price.  Consequently, unless a 

price trend was developing in the stock, these liquidity suppliers would quickly step in to 

refresh the book, and earn the spread in a mean-reverting market. 

Subsequent reduction in tick sizes to teenies (1/16th) in 1997-1998 and to decimal 

pennies in 2001-2002 has resulted in much faster quote processes and much lower depth at 

the BBO.  Table 1 again shows the effect on elapsed time of this finer-grained pricing 

process. Two hundred quotes occurred in 1998 in 4,113 seconds (approximately one every 20 

seconds).  200 quotes occurred in 2002 seconds in 1,084 seconds, which halved to 571 

seconds in 2003, and halved again to 291 seconds by 2006 (approximately one per second).  

In addition, spreads in DJIA stocks collapsed over the period of these shrinking tick sizes to 

just $0.043 in 2003 from $0.126 in 1998 and $0.165 in 1995.   
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After 2002, not only did quote frequency rise and spreads collapse, but more 

significantly, those order imbalances that increased the comparatively small 4 cent spreads 

did so without triggering a refresh of the book.  We interpret these findings to mean that the 

finer-grained quotation grid allows small changes in the implicit efficient price (inside 

arbitrage threshold bounds) to induce spread increases (i.e., from $0.04 to $0.05) without 

triggering arbitrage-motivated liquidity supply. 

Consequently, we would predict that many fewer quote sequences mean revert after 

the minimum tick size reductions (comparing 1996 and earlier to 2002 and later years).  

Again referring to Table 2 and referencing optimal lag structures, in 1996 at 1/8th tick sizes 

(and $0.14 spreads), 96.7% of the 75 quote spread sequences mean reverted.  In 1999 at 

teenies for the tick size, only 86.3% of the 75 quote spread sequences mean reverted. After 

2002 with pennies for the tick size, 58.2% of the 75 quote sequences and less than half 

(35.9% to 47.9%) of the 50 quote spread sequences (especially relevant to algorithmic 

trading) mean reverted.  Similar before and after results are apparent at longer time intervals 

of 100 quotes (see Table 2 above and below the shaded horizontal bars for the tick size 

changes in 1997 and 2001).2  We conclude that legging happens on the finer-grained price 

grid today in large part because of much less triggering of arbitrage-based liquidity supply.    

 

3.2 A Striking Result on Time Scale Invariance  

Under the alternative hypothesis for the dynamics of the spread that we developed in 

section 2, as the difference between two semi-martingales plus a constant, even with tracking 

error, we would expect the spread sequence to be white noise around a constant.  Such a 

sequence exhibits time scale invariance.  In fact, referring again to Table 2 and reading from 

                                                 
2 At 150 and especially at 200 quotes, the incidence of mean reversion approaches 100% for essentially all the 
years.  These time intervals are much longer than the trading behavior being modeled. 
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right to left across the columns in row 1, we find the autoregressive structure of the spread 

sequence is quite different at longer and shorter time intervals.   

At 150 quotes (occurring over an elapsed time of 216 seconds in 2006), we reject the 

null hypothesis of a unit root in the data in favor of a mean-reverting process 92.4% of the 

time.  On the other hand, at half that elapsed time (over a 106 second interval), only 67.0% of 

the 75 quote sequences are mean-reverting. In the still shorter trading time intervals relevant 

to algorithmic trading, with 50 quotes, a majority (50.3%) of the quote sequences are unit root 

processes.   

This lack of time scale invariance may reflect the declining power of the test as the 

number of observations declines from 150 to 75 to 50 quotes.  However, another 

interpretation altogether is that time-varying spreads reflect order imbalance, perhaps in much 

the same way that random walk processes characterize the effect of public information 

arrivals on quote midpoints in equation (5) above and Glosten (1987).  Chakravarty, Harris 

and Wood (2003) explore an error correction model of spreads and depth quotes under that 

assumption.   

A third possibility altogether is that spread sequences are non-stationary because of 

hidden Markov model regime switching (Hamilton 1989) in the implicit efficient price Pt 

underlying the quote process.  Hardy (2001) shows that S&P monthly returns are not 

distributed independent lognormal.  Rather she finds that the fat tails and positive 

autocorrelation fit a HMM mixture of normals with switching regimes which are not time 

scale invariant.  These investigations on monthly returns may hold key insights for further 

research on daily closing prices or even on trade-to-trade data. 
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3.3 The Effect of Excessive Lag Length on the Estimated Frequency of Mean-Reversion 

 To develop these conclusions about the lack of time scale invariance in the data 

generating process and about the effect of minimum tick size reduction on the mean-reversion 

of spreads requires careful attention to the optimal lag structure.  Enders (2004, p. 229) warns 

that too many lags (or too few) reduces the power of the augmented Dickey-Fuller test to 

reject false positives of a unit root process.  The percentage mean-reversion listed in Table 2 

arises from nested ADF tests that incorporate the possible inclusion of drift and deterministic 

time trends (Enders, 2004, pp. 207-214).   

We display three columns of results for each time interval (i.e., for 50, 75, 100, and 

150 quotes).  The first column in these tuples labeled “optimal lags” employs the lag structure 

that minimizes the Akaike Information Criterion for the log (ask minus bid).  This estimation 

employs whatever discontinuous permutation of lags minimizes the AIC.  The second column 

in each tuple labeled “best continuous lags” employs F tests to test shorter against a null 

hypothesis of longer lag structures, beginning with ten lags.  The final column specifies a ten 

lags structure.    

Figure 1 displays the lag structure lengths for the optimal lag length procedure in 

DJIA stock quotes.  Three quotes is the modal lag length with 27.28% of the cases.  Two and 

four quotes are almost equally highly probable, at 23.28% and 20.18%, respectively.  Overall 

the distribution of optimal lag lengths appears lognormal, with one lag having only a 3.42% 

frequency, and 5 through 9 lags declining monotonically from 13.18% to less than 1% 

frequency.  Altogether, ten and more lags occur in the analysis of optimal lag lengths for 

DJIA stock data with a frequency of 4%.  

Even at 150 quotes (an extremely long time interval today), Table 2 displays a 

consistent result.  In every year, the use of ten lags rather than a set of best continuous lags or 
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the optimal lag structure understates the incidence of mean-reversion and overstates the 

presence of a unit root.  In 2006, I(1) spreads are falsely identified as occurring with 43.5% 

(1- 0.565) frequency.  In fact, optimal lag structures identify I(1) spread sequences only 7.6% 

of the time in 2006. 

As the time scale interval becomes shorter, this estimation of large numbers of false 

positive unit roots resulting from misspecifying an excessive number of lags is ever more 

pronounced.  At 75 quotes, ten lags understates mean reversion as 22.9% when optimal lags 

identifies 67.0%.  And at the 50 quote sequences most relevant to algorithmic trading in 

electronic markets, ten quotes misestimates mean-reversion at only 14.9 % when in fact 

mean-reversion has more nearly 49.7% frequency.  All other years in Table 2 show the same 

pattern of understating the incidence of mean reversion in stock price quotes when 

excessively long lag structures are employed in ADF tests.3  In Table 3, we have demeaned 

the spreads data by each trading day, so that the optimal lag structure regressions could be 

estimated with no intercept.  The qualitative results are virtually identical. 

 

4.  Conclusion 

The mean-reverting stochastic property of spreads that makes for net position taking 

by liquidity suppliers is now less probable than unit root processes for the spread.  The 

reduction of minimum tick sizes in 1997 and 2001 appear responsible.  Alongside the benefit 

of massive reductions in the spread, the markets have experienced the costs arising from less 

mean-reversion in spreads.  Many more trades must now be executed to accomplish the same 

position as before tick size reduction, but total volume is much higher.  Liquidity in the sense 

                                                 
3 In Table 2, best continuous lags are subject to the same understatement of the incidence of mean-reversion 
relative to the optimal lag structure but the specification bias in all years and at all time intervals appears to be 
small.   
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of cumulative trading volume over some time frame is substantially higher fundamentally 

because net trading costs are substantially lower.  

After each tick size reduction, we have documented an increase in the non-stationarity 

of spreads.  On the one hand, this is a desirable development because it represents more 

accurate price discovery with the finer grid.  On the other hand, non-stationary spreads have 

discouraged market makers and limit order traders providing liquidity from posting 

substantial depth at the BBO.  To accurately understand the magnitude of these tradeoffs 

requires a correctly-specified lag structure for the stationarity tests.  Long (ten lag) model 

structures underreject the null hypothesis of a unit root in spreads when it is false.  Too few 

lags have the opposite effect.  In NYSE quote data, post-tick size reduction, we find the bias 

from mis-specified lag structures is very substantial. 

 

 



 16

REFERENCES 

Bertsimas, D. and A. Lo, 1998, Optimal control of execution costs, Journal of Financial 
Markets, 1, 1-50. 
 
Campbell, J. Lo, A., and C. MacKinlay, 1997, The econometrics of financial markets, 
Princeton University Press: Princeton, NJ. 
 
Chakravarty, S., Harris, F.H.deB., and R. A. Wood, 2003, “Impulse response functions for 
cointegrated spreads and depths: Which conveys new information first?” Unpublished 
working paper, NBER Financial Market Microstructure Research Group, NBER-NYSE 
Conference on Institutional Trading, Palm Beach, FL. 
 
Dickey, D. and W. A. Fuller, 1979, Distribution of the estimates for autoregressive time 
series with a unit root, Journal of the American Statistical Association 74, 427-431. 
 
_______________________, 1981, Liklihood ratio statistics for autoregressive time series 
with a unit root, Econometrica 49, 1057-1072. 
 
Enders, W., 2004, Applied Econometric Time Series, 2nd ed., Wiley: New York (1995, 1st ed.) 
 
Engle, R. and Patton, A., 2004, Impacts of trades in an error correction model of quote prices, 
Journal of Financial Markets, 7, 1-25. 
 
Glosten, L., 1987, Components of the bid-ask spread and the statistical properties of 
transaction prices, Journal of Finance, 42, 1293-1307. 
 
Gordon, S. and P. St-Amour, 2000, A preference regime model of bull and bear markets, 
American Economic Review, 90(4), 1019-1033. 
 
Hardy, M., 2001, A regime-switching model of long term stock returns, North American 
Actuarial Journal, 5, 241-253.   
 
Harris, F.H.deB., Wood, R.A., and Y. Zhao, 2007, Endogenous regime change in hidden 
Markov models of daily stock returns, Unpublished working paper. 
 
Harris, R.I.D., 1992, Testing for unit roots using the augmented Dickey-Fuller test: Some 
issues relating to the size, power, and the lag structure of the test, Economic Letters, 38, 381-
386. 
 
___________, 1995, Using cointegration analysis in econometric modeling, Harvester 
Wheatsleaf: London.  
 
Hasbrouck, J., 2007, Empirical market microstructure, Oxford University Press: New York. 
 
Ng, S. and P. Perron, 1995, Unit root tests in ARMA models with data dependent methods for 
the selection of the truncation lag, Journal of the American Statistical Association, 90, 268-
81. 



 17

 
Perron, P., 1988, Trends and random walks in macroeconomic time series, Journal of 
Economic Dynamics and Control 12, 297-332. 
 
Roll, R., 1984, A simple implicit measure of the effective bid-ask spread in an efficient 
market, Journal of Finance, 39, 1127-1140. 
 
Schwert, G. W., 1989, Tests for unit roots: A Monte Carlo investigation, Journal of Business, 
and Economic Statistics 7, 147-159. 
 
Timmermann, A., 2001, Structural breaks, incomplete information, and stock prices, Journal 
of Business and Economic Statistics, 19 (3), 299-314. 



 18

 
 

 



 19

 

 Percent of runs of quotes that are stationary by run length--AIC.  Optimal lag regression and sas code contain both trend
Quote run 

length 50 75 100 150 

Year 
optimal 

lags 

best 
continuous 

lags 10 lags 
optimal 

lags 

best 
continuous 

lags 10 lags 
optimal 

lags 

best 
continuous 

lags 10 lags 
optimal 

lags 

best 
continuous 

lags 10 lags 
o

2006 49.7% 48.7% 14.9% 67.0% 62.6% 22.9% 79.9% 72.9% 34.9% 92.4% 85.0% 56.5% 9
2005 46.5% 48.2% 15.4% 66.9% 64.1% 24.2% 80.7% 75.0% 36.9% 93.7% 87.2% 59.0% 9
2004 48.7% 49.7% 15.4% 69.1% 65.2% 24.2% 82.8% 76.1% 36.1% 95.2% 88.3% 58.6% 9
2003 48.0% 49.9% 15.6% 69.1% 65.9% 24.1% 83.3% 77.1% 35.5% 95.5% 89.3% 58.1% 9
2002 35.9% 43.1% 15.3% 58.2% 61.8% 23.1% 76.0% 75.5% 33.8% 92.8% 89.4% 56.3% 9
2001                         
2000 57.3% 61.2% 16.7% 80.1% 77.7% 27.4% 90.6% 86.0% 40.9% 97.3% 93.4% 64.9% 9
1999 64.6% 67.5% 17.4% 86.3% 82.8% 28.4% 95.1% 90.0% 42.7% 99.2% 95.6% 67.4% 9
1998 68.0% 70.0% 17.6% 88.1% 84.1% 29.3% 95.7% 90.4% 44.2% 99.1% 95.4% 68.3% 9
1997                         
1996 87.4% 83.0% 19.7% 96.7% 91.4% 35.1% 98.9% 94.6% 52.6% 99.8% 96.9% 75.1% 9
1995 90.9% 85.4% 20.1% 98.0% 92.2% 36.9% 99.2% 94.8% 54.7% 100.0% 96.3% 77.7% 1
1994 89.3% 84.9% 20.2% 97.4% 92.7% 36.0% 99.4% 95.2% 54.6% 100.0% 96.6% 74.7% 1
1993 87.2% 84.4% 20.0% 97.0% 91.9% 36.4% 99.2% 94.5% 53.0% 100.0% 97.1% 75.5% 1
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Table 3  Specification: Asymmetric Testing -- Data Demeaned By Day 

 Percent of runs of quotes that are stationary by run length--AIC.  Optimal lag regression contains no trend or intercept; ADF te
and trend               

 50 quotes 75 quotes 100 quotes 150 quotes 

Year 
optimal 

lags 

best 
continuous 

lags 10 lags 
optimal 

lags 

best 
continuous 

lags 10 lags 
optimal 

lags 

best 
continuous 

lags 10 lags 
optimal 

lags 

best 
continuous 

lags 10 lags 
o

2006 70.1% 62.3% 27.3% 84.2% 74.3% 42.2% 91.5% 82.3% 57.4% 97.1% 91.4% 79.1% 9
2005 70.3% 65.4% 28.5% 85.9% 78.3% 45.9% 93.3% 86.0% 61.7% 98.3% 94.3% 83.4% 9
2004 72.2% 65.7% 28.1% 87.7% 78.9% 45.3% 94.7% 86.9% 61.4% 98.9% 94.9% 83.5% 9
2003 72.0% 66.4% 28.5% 88.2% 80.2% 44.9% 95.2% 88.2% 61.3% 99.2% 95.5% 83.7% 9
2002 62.1% 62.9% 27.2% 82.7% 79.3% 43.0% 92.5% 88.1% 59.0% 98.4% 95.4% 82.0% 9
2001                         
2000 81.8% 77.0% 31.4% 93.4% 87.3% 50.7% 97.3% 92.4% 68.0% 99.3% 97.1% 88.5% 9
1999 86.9% 80.9% 32.6% 96.5% 90.1% 52.5% 99.1% 94.4% 70.3% 99.9% 98.0% 90.5% 9
1998 88.5% 82.6% 39.3% 97.0% 91.1% 62.3% 99.1% 94.6% 71.8% 99.8% 98.1% 91.1% 1
1997                         
1996 96.5% 89.5% 41.0% 99.2% 94.5% 65.0% 99.8% 97.0% 83.0% 99.9% 98.7% 95.1% 1
1995 97.9% 91.1% 43.1% 99.6% 96.0% 80.5% 99.9% 97.4% 84.8% 100.0% 99.1% 96.5% 1
1994 97.4% 91.2% 43.2% 99.5% 95.7% 68.3% 99.9% 97.6% 84.1% 100.0% 99.2% 95.4% 1
1993 96.7% 91.0% 42.1% 99.4% 95.3% 67.2% 99.8% 97.4% 83.9% 99.9% 99.2% 96.2% 1

 



 21

 


