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Abstract   

This study examines HFTs’ order flow toxicity to both HFT and non-HFT liquidity suppliers, and HFTs’ 

impact on stock price variance. Order flow toxicity is measured with VPIN metric. Determinants of order 

flow toxicity, relation between volatility and order flow toxicity, and application of FVPIN contract as a 

protection against order flow toxicity are also examined. An ‘actual variance’ measure which eliminates 

impact of spreads on the variance is developed. Results show that HFTs exert order flow toxicity to non-

HFT liquidity suppliers. While trade intensity is negatively related to VPIN, return volatility is positively 

related to VPIN. VPIN has predictive power for future volatility in equity markets, even after controlling 

for trade intensity. FVPIN contract is a useful hedge tool against toxicity. The developed actual volatility 

measure shows that due to impact of spreads observed variance seems to be higher than actual one.  
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1. Introduction 

High frequency trading is a subset of algorithmic trading that aims to profit from trading at very 

high speed and holding inventories for only seconds or milliseconds (Brogaard, 2010). The 26 high 

frequency trading firms, identified in the NASDAQ HFT dataset, which includes 120 stocks, participate 

in 74% of all trades which executes on NASDAQ and make around $3 billion annually (Brogaard).  The 

upper boundary for estimated profit of aggressive high frequency traders (HFTs) on the US market is 

around $26 billion (Kearns et al., 2010). Cartea and Penalva (2011), Jarrow and Protter (2011) and Biais, 

Foucault, and Moinas (2011) develop theoretical models to understand the roles of HFTs. This theoretical 

work implies that HFTs may be harmful or beneficial for market quality under certain conditions.  

Empirical studies (Brogaard; Zhang, 2010; Kearns, Kulesza, and Nevmyvaka, 2010; Menkveld, 2011; 

Kirilenko, Kyle, Samadi, and Tuzun, 2011; and Brogaard, Hendershott, and Riordan, 2012) look at HFTs 

from different perspectives and find that HFTs appear to be mostly beneficial for markets. 

This paper examines two issues related to HFTs, the order flow toxicity in HFT trades and the 

impact of HFTs on stock price variances. We also examine the determinants of order flow toxicity, the 

forecasting power of the VPIN metric for return volatility, and test the ability of FVPIN future contracts 

in protecting against order flow toxicity. While examining the variance impact of HFTs, we also utilize a 

volume based approach in calculating variance and develop an ‘actual variance’ measure that eliminates 

spreads’ impact on the observed variance.   

Empirical studies of HFTs mainly focus on the impact on price discovery, liquidity, spreads, and 

stock price volatility.  Our study focuses on HFTs’ impact on order flow toxicity. Easley et al. (2012-a) 

develop a new methodology – volume-synchronized probability of informed trading, the VPIN measure – 

to estimate order flow toxicity based on volume imbalances and trade intensity.  This measure depends on 

volume time rather than clock time. Easley et al. show that the VPIN is an applicable measure for short 

term, toxicity induced volatility. By applying the VPIN approach, our study aims to determine the impact 

HFTs have on order flow toxicity and losses to liquidity providers.  In extreme cases, high loses caused 

by HFTs may force liquidity providers out of the market, hence, the findings of this study can be used to 
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suggest microstructure alterations to maintain market stability. According to Easley, Prado, and O'Hara 

(2012-a) order arrivals contain information about the price movements and a volume based approach is 

more relevant to extract information than the clock time approach. Accordingly, applying the VPIN 

approach is more reliable to study the relation between liquidity suppliers and HFTs than methods that 

apply a clock time approach.  

By examining the average VPIN of HFTs’ trades we find that, regardless of trader type (HFT or 

non-HFT), the lowest toxicity occurs in trades of high volume stocks. HFT initiated trades have higher 

toxicity than non-HFT initiated trades in the overall sample and in all volume classifications, except the 

high volume sample. Trades in which both the liquidity demander and liquidity supplier are high 

frequency trading firms have the highest toxicity in all samples except high volume stocks. We find that 

trade toxicity is twice as high for transactions where both the liquidity supplier and demander are HFT 

firms than when neither side of the transaction is an HFT firm.  The toxicity problem is more severe in 

low volume stocks than medium volume and high volume stocks. Based on our findings, which are 

consistent with Cartea and Panelva (2011), Biasis, Foucault and Moinas (2011), Jarrow and Protter(2011), 

and Brogaard, Hendershott and Rioardan (2012), we conclude that HFTs may cause losses to other 

liquidity providers. 

Our study also examines the determinants of order flow toxicity. According to studies on VPIN 

metric (Easley et al. 2012-a) and factors that affect liquidity suppliers willingness (Griffiths et al., 2000) 

we expect trade intensity and risk to be important determinants of VPIN. We find that the number of 

trades, trade size per transaction, and volatility of the stock are main determinants of order flow toxicity. 

While trade intensity variables are negatively related to toxicity this relation is not linear. Also risk is 

positively related to toxicity.  

There is an ongoing debate about the relation between volatility and the VPIN metric (Easley et 

al. 2012; Anderson and Bondarenko, 2013).    While Easley et al. find VPIN and absolute returns are 

correlated, Anderson and Bondarenko find that VPIN has no predictive power for future volatility. Both 

of these studies test E-mini S&P 500 futures contracts data. We examine the relation between volatility 
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and VPIN metric on equity market. By using two different volatility measures we show that VPIN in 

volume bucket 1 , is positively related to volatility even after controlling for trade intensity variables.  

Easley, Prado, and O’Hara (2011) develop a futures contract (FVPIN) that is valued as      

[-ln(VPIN)] and is argued to hedge against the order flow toxicity. In our study, we test if FVPIN 

contracts can protect traders against flow toxicity by calculating the returns of FVPIN contracts over 120 

stocks in 2009.  Our findings show that the FVPIN futures contract can provide positive returns in the 

overall sample and all volume deciles, however, for a given level of return high volume sample provides 

the lowest risk. Overall, we conclude that FVPIN may be a hedging tool against the toxicity losses for 

liquidity suppliers.  

 The HFTs’ impact on stock price variances is another issue we examine. While theoretical work 

predicts that HFTs’ increase price volatility (Cartea and Penalva 2011; and Jarrow and Protter, 2011), the 

empirical results for HFTs impact on volatility is mixed. Brogaard (2010) finds that HFTs may reduce 

price volatility. On the other hand, Kirilenko, Kyle, Samadi, and Tuzun (2011) find that HFTs lead to an 

increase in volatility during the flash crash. Similar to Kirilenko et al., Zhang (2010) finds that HFTs may 

increase stock price volatility. In this study, we approach the HFTs—stock price volatility relation from a 

different perspective.  

By building on Easley, Prado, and O'Hara’s (2012-a) argument that, in general, a volume clock is 

more relevant than a time clock in a high frequency world for future price movements, we apply a volume 

based stock price variance calculation method, rather than the classical time clock approach, to examine 

HFTs impact on stock price volatility.  Corwin and Schultz (2012) argue that a variance measure free 

from bid ask bounce may be useful for financial research. To this end, following Parkinson (1980) and 

Corwin and Schultz (2012), we develop a variance measure that takes into account and eliminates the 

impact of spread on observed variance.   

Our results show that, when HFTs demand liquidity from non-HFTs they increase observed 

variance, which is consistent with theoretical predictions of Cartea and Penalva (2011) and Jarrow and 

Protter (2011) and the empirical findings of Zhang (2010).  We find that when HFTs provide liquidity 
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they decrease variance, implying HFTs may reduce stock price volatility. This finding is consistent with 

Brogaard (2010).  

The actual variance measure, which we develop in our paper, yields noteworthy results. First, 

when the impact of spread is removed, actual variance is always lower than observed variance. Second, 

while observed variance shows a significant, but small, difference between HFT and non-HFT trades, the 

actual variance model shows that there is no difference between the samples. These findings support 

Corwin and Schultz (2012) and O’Hara (2006) arguments that removing the impact of spreads from 

variance may be beneficial for financial research.  

 

2. Hypotheses development and related literature 

2.1 High frequency traders and order flow toxicity 

Cartea and Penalva (2011), Jarrow and Protter (2011), and Biais, Foucault, and Moinas (2011) 

theoretically study the role of HFTs in financial markets. With a three-agent model (HFT, market maker, 

and liquidity trader), Cartea and Penalva propose that HFTs cause losses to both liquidity traders and 

market makers, increase price volatility and volume, but do not improve liquidity. Since market makers 

losses are compensated with higher liquidity discounts, HFTs’ net impact on market maker profit is zero. 

Similar to Cartea and Penalva’s (2011) predictions, Jarrow and Protter (2011) show, with a 

theoretical model that assumes a frictionless and competitive market (no bid/ask spread, and perfectly 

liquid markets), that HFTs may have a dysfunctional role in financial markets. According to their model, 

HTFs, due to their high speed, can react to a signal (i.e. price change) much faster than ordinary investors 

and thus all HFTs react like a large trader with the same trade. So, HTFs both increase market volatility 

and create their own profit opportunities (price momentum) at the expense of ordinary traders. 

Cartea and Penalva (2011)  and Jarrow and Protter (2011) agree that HFTs generate losses to 

other traders, however Biais, Foucault, and Moinas (2011) find that increases in the level of high 

frequency trading, until a threshold, may increase the probability that investors will find a trading 

counterparty and thereby increase trading volume and profits.  On the other hand, high levels of high 
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frequency trading can impose adverse selection costs on slow traders and reduce volume and profits and 

cause slow traders to drop out of the market. 

Based on these theoretical works, we expect HFTs to increase adverse selection in trading and 

decrease profits or even cause loses to other traders.  When order flow adversely affects liquidity 

providers and causes losses to them, it is called order flow toxicity (Easley, Prado, and O'Hara; 2012-a).  

As a result, we expect higher order flow toxicity in HFTs’ trades than other trades. We formally test the 

following hypothesis. 

Hypothesis 1:  HFTs exert higher order flow toxicity on non-HFT liquidity suppliers than they do on HFT 

liquidity suppliers. 

Examining the impact of HFTs on order flow toxicity is important because order flow toxicity 

may affect market liquidity. Easley, Prado, and O'Hara, (2012-a) reason that high toxicity, which is 

measured by VPIN, will increase losses to liquidity providers; hence liquidity providers may drop out of 

the market and by extension, decrease liquidity. HFTs’ impact on market liquidity is examined by several 

empirical studies namely; Hendershott, Jones, and Menkveld (2011), Hendershott and Riordan (2011), 

and Brogaard, Hendershott, and Riordan (2012).   

Hendershott, Jones, and Menkveld (2011) study the impact of algorithmic trading (AT) on 

liquidity for a sample of 923 NYSE stocks over the five years from 2001 through 2005 and find that AT 

improves liquidity. Similarly, Hendershott and Riordan (2011) study the 30 largest DAX stocks and the 

role of algorithmic traders in market quality and find that AT consumes liquidity when spreads are wide 

(liquidity is expensive) and provides liquidity when spreads are narrow (liquidity is cheap). On the other 

hand, Brogaard, Hendershott, and Riordan (2012), who examine 120 randomly selected NASDAQ stocks 

from 2008 to 2009, find that HFTs’ non-marketable orders may cause other liquidity holders to withdraw 

from the market. 

We determine what impact (if any) HFTs have on market liquidity through order flow toxicity. 

Though current studies examine the direct impact of HFTs on market liquidity and find that HFTs mostly 

increase liquidity, our approach is different than current empirical HFT studies (Brogaard et al., 2012 ; 
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Hendershott et al., 2011, and Hendershott and Riordan, 2011)  in that we examine the indirect impact (if 

any) HFTs have on liquidity through order flow toxicity. In short, if toxicity of HFTs’ order flow is 

higher than that of normal investors (if hypothesis 1 is supported), then relying on Easley, Prado, and 

O'Hara, (2012-a) reasoning, we can conclude that HFTs may harm market liquidity indirectly as they may 

cause other investors to drop out the market.  

2.2 Determinants of the VPIN metric 

Another contribution of our study is that we examine the determinants of the VPIN measure. 

According to Easley et al. (2012 –a), VPIN is a measure of order flow toxicity -order flow is toxic when it 

causes losses to liquidity suppliers- and based on volume imbalances and trade intensity.  Accordingly in 

our examination of the determinants of VPIN, we focus on trade characteristics such as size and number 

of trades, as well as factors that affect liquidity providers’ willingness to provide liquidity.  

Griffiths et al. (2000) cite that trader’s willingness to supply liquidity is a decreasing function of 

stock price variability. Accordingly, we expect variance in stock returns to affect order flow toxicity 

measure “VPIN”.  We calculate our proxy for price variability by dividing each volume bucket into ten 

equal sub-volume buckets. Using the first and the last price in each sub-bucket we calculate the 

percentage change in prices. We then calculate standard deviations by using the percentage change in 

prices. We call this measure as “Risk” variable in the multivariate analysis.  

Depending on Easley et al. (2012–a) VPIN definition, we expect trade intensity to be an 

important determinant. We measure trade intensity with two different measures, average trade size and 

number of trades in each volume bucket. The average trade size is the number of shares per trade in each 

volume bucket.  Easley et al. also study the distribution of VPIN conditional on absolute returns. They 

find that high absolute returns are rarely followed by small VPIN. Thus, we include absolute return in 

each volume bucket in our analysis as a determinant of VPIN. Specifically absolute return is defined as

|1|
1






P

P
, where iP  is the average price in volume bucket i .  

We formally test the following hypothesis regarding the determinants of VPIN: 
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Hypothesis 2: Trade intensity and return volatility are significant determinants of the order flow 

toxicity measure VPIN. 

2.3 Relation between risk, absolute return and VPIN Metric 

Easley et al. (2012-a) find that there is a linkage between toxicity and future price movements. 

Specifically, the authors determine that VPINs are positively correlated with future price volatility for E-

mini S&P 500 futures data. Accordingly, they conclude that the VPIN has a significant predictive power 

over toxicity induced volatility.  On the other hand, by studying E-mini S&P 500 futures contracts, 

Anderson and Bondarenko (2013) conclude that once trading intensity and volatility are controlled, VPIN 

metric has no incremental forecasting power for future volatility. The volatility in Easley et al. paper is 

defined as percentage change in prices between two subsequent volume buckets (absolute return), 

|1|
1






P

P
, where iP  is the average price in volume bucket i .  In Anderson and Bondarenko, volatility is 

proxied with average absolute one minute return (AAR) where forecast horizon is defined as five minutes 

and one day. 

We test the relation between return volatility and VPIN in equity markets. Our VPIN metric does 

not suffer from any order classification errors because our data specify the trade initiator. Following both 

Easley et al. (2012-a) and Anderson and Bondarenko (2013), we measure volatility with two different 

measures, absolute return and average return volatility.  Absolute return is definition is given above. For 

average return volatility, since VPIN measure is mainly depend on volume time not clock time, we divide 

each volume bucket into ten equal sub volume intervals, and calculate return volatility by using these ten 

sub volume intervals. Formally we test the following hypothesis without arguing the direction of the 

relation.  

Hypothesis 3: The order flow toxicity in volume bucket   will be related to volatility in volume 

bucket 1 . 

 2.4 Protection against order flow toxicity, FVPIN contracts 



10 
 

We further provide empirical evidence on the application of a futures contract that may protect 

investors against order flow toxicity.  Easley, Prado, and O'Hara, (2011) suggest a futures contract 

(FVPIN), which is valued as [-ln (VPIN)], can be used as a hedging instrument against order flow 

toxicity. We formally test the following hypothesis regarding the FVPIN contract. 

Hypothesis 4: FVPIN future contracts provide positive returns to investors.  

Easley, Prado, and O'Hara (2012-b) argue that HFTs are not temporary traders in the market 

place, hence, non-HFTs must adapt to the new trading environment. FVPIN futures contracts may be one 

way that non-HFTs can adapt. If these contracts can protect investors against order toxicity, they can help 

non-HFTs deal with possible HFT induced order flow toxicity. 

2.5 High frequency traders’ impacts on volatility 

Another prediction of theoretical studies (Cartea and Penalva, 2011, and Jarrow and Protter, 

2011) is that HFTs increase volume and volatility in markets.  We contribute to this stream of literature in 

two ways: First unlike previous literature, we apply a volume based variance method when examining the 

impact of HFTs. Easley, Prado, and O'Hara (2012-a) find that volume time, which may be more relevant 

to high frequency world, is much closer to the normal distribution, has less heteroscedasticity and serial 

correlation than clock time.   

 Second, by building on results of Parkinson (1980) and Corwin and Schultz (2012), we develop a 

variance measure that eliminates the impact of the spread on observed variance. We define the variance 

calculated with this measure as actual variance.  O’Hara (2006) argues that, since asset prices emerge in 

financial markets, the costs of liquidity (i.e. spreads) may matter for the prices. Since spread may affect 

prices, spreads may also affect variance. This reasoning is supported by Corwin and Schultz, who argue 

that a variance measure that is free from bid-ask spread bounce may be beneficial for financial research.   

Kirilenko et al. (2011) examine the trading patterns of HFTs on a single day (May, 6, 2010) and 

do not consider the direct impact of HFTs on stock price volatility for a longer period. Their study focuses 

on overall market volatility, which is caused by HFTs’ trades on May 6, 2010. The main differences 
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between our study of HFTs’ impact on price volatility and that of the previous studies is that, unlike 

Kirilenko et al., our focus is on stock price volatility impact of HFTs in a more general setting (over an 

entire year, 2009, and over one week in 2010, not for a single event day). Brogaard (2010) calculates 

realized volatility in one minute intervals with and without HFT initiated trades and then compares 

realized volatility with volatility calculated without HFT initiated trades.  In our study, we examine the 

trades in six different samples without making any assumptions about the existence of HFTs in the 

market. As a result our sample is more comprehensive and less likely to violate any microstructure 

properties. Another unique feature of our study is that we separate realized volatility and actual volatility 

in a volume  based setting. Zhang (2010) controls for factors that have an impact on stock price 

volatility, tests the impact of HFT on the volatility, and finds that HFTs increase stock volatility. In his 

data set HFT trading is not directly observable; rather he uses an estimated HFT activity measure. Unlike 

his study, we directly observe the initiator of the trade (HFTs or non-HFT).  

By using results of Parkinson (1980) and assumptions of Corwin and Schultz (2012), we show 

that 
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Where     2

,tobserved is the observed variance of the stock prices in time t, 
2

, tactual is the actual variance of 

stock prices in time t, S is spread, k1 = 4ln(2) and   .
8

k2


 By solving equation 1 for actual variance 

and using observed spread data, we examine the impact of HFTs and non-HFTs on actual variance of 

stock prices. Our study separates the impacts of HFTs and non-HFT on actual stock variances and 

observed stock variances.  By using our actual variance measure we test the following hypotheses: 

Hypothesis 5: HFTs will increase observed and actual stock price variance. 

We justify our study of the impact of HFTs on stock price volatility by the following:  First, 

increases in stock volatility can increase the expected riskiness of the firm and, as a result, increase the 
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cost of capital (Froot, Perold, and Stein, 1992).  As stock prices become noisier signals of firm value, 

stock price based compensations will become more costly (Baiman and Verrecchia, 1995).  High stock 

price volatility (sudden and large stock price drops) can increase the likelihood of shareholder lawsuits 

(Francis, Philbrick, and Schipper, 1994). 

3. Methodology 

In this section we explain the methodologies we follow to calculate VPIN and volume bucket 

based observed variance and actual variance measures.  

3.1 Order flow toxicity 

We calculate volume-synchronized probability of informed trading, the VPIN toxicity measure, 

following Easley, Prado, and O'Hara (2012-a). This study defines VPIN as: 

Vn

VV
VPIN

n BS

*

1 



 

 

In the VPIN calculation Easley, Prado, and O'Hara first choose a fixed volume bucket size  

( volumedailyAverageV   *501 ) and set the number of buckets to .50n  Then they calculate sale 

volume (
SV ) and buy volume (

BV ) order imbalances for a given volume bucket ( ), and sum the order 

imbalances over the number of buckets. VPIN is calculated by dividing the sum of order imbalances over 

the number of buckets by the number of buckets multiplied by bucket volume. In Easley, Prado, and 

O'Hara each volume bucket is divided into one minute time intervals to find buy volume and sale volume. 

Since we know if the trade is a buy or sale, we use the actual buy and sale volume instead of estimated 

ones. We expect actual data to increase the accuracy of the VPIN measure. We choose the bucket size, 

volumedailyAverageV   *501 and the number of buckets, 50n , as in Easley, Prado. The authors 

show that the choices of bucket size and number of buckets are robust to alternative specifications. 

 

3.2 Impact of HFTs on actual stock variances 



13 
 

This section describes the methodology that we develop and use to study the impact of HFTs on 

stock price variances. Section 3.2.1 explains differences between volume interval and time interval 

approaches to variance calculation. Section 3.2.2 explains the two different methods we use to calculate 

volume interval variance, namely; observed variance and actual variance.  

 

 3.2.1 Time interval variance versus volume interval variance 

Easley, Prado, and O'Hara (2012-a) reason that trade time is better captured by volume than clock 

time in a high frequency world, and that the order arrival process is informative about subsequent price 

movements. Measuring variance with a volume interval approach may be more beneficial than the 

classical time interval approach in a sample with high frequency traders. To better understand this 

reasoning, a simple quantitative explanation may be helpful.  

We consider two cases. In first case we assume order flow will be fast and so volume buckets will 

be filled quickly, and in the second case we assume order flow is slow and volume buckets will be filled 

slowly. Consider a time interval 1 & ,0 10  tt  in the first case, with a normal time interval approach. 

Basically, the variance will be a ratio of the highest price (
t

hP ) to the lowest price ( t
LP ). When order flow 

is fast and volume buckets are filling quickly, a fixed time interval will have more than one volume 

bucket (i.e. two volume buckets). Hence, the volume is high enough so that the interval is divided into 

multiple volume buckets (i.e. 2110   &   toto ). With the volume interval approach, we use the two 

highest prices, in this instance, and the two lowest prices to calculate the variance, implying that volume 

based measure becomes more sensitive than the time interval approach when order arrival is high because 

the volume interval approach considers more than one set of high and low price pairs, while the time 

interval approach only considers one set of high price and low price pairs, regardless of order arrival 

speed.  

 In case two, we assume that order arrival is slow so that it takes more time to fill the volume 

bucket, hence time bar interval will be a subset of the volume bucket. To calculate variance in case two 
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using a volume interval we will select the highest price ( 
hP ) and the lowest price ( 

LP ) in the volume 

bucket. Note that )max(   ih PP and )min(   iL PP , the time interval is a subset of volume 

interval, t
hh PP  and t

LL PP  . Hence, the volume interval will estimate a variance that is larger than or 

equal to time interval variance i.e. )()( t
L

t
hLh PPPP  . 

Overall, the volume time approach is more sensitive when order arrival rates are high and does 

not underestimate the variance when order arrival rates are slow. A volume time (or interval) approach of 

calculating variance seems to be more beneficial in a high frequency world as suggested by Easley, Prado, 

and O'Hara (2012). We calculate volume interval based variance in two ways: an actual variance and an 

observed variance, which is explained in the following section.  

3.2.2 Observed Variance versus Actual Variance 

Building on Corwin and Schultz (2012), we assume that, in each volume bucket, the highest price 

trades are buyer initiated trades. Hence, the highest observed price (
v
oH ) in volume bucket v   is 

increased by half of the spread )
2

(
s

, the lowest price trades are assumed to be seller initiated trades and so 

the lowest observed price  (
v
oL )   in volume bucket v is decreased by half of the spread )

2
(
s

.  Formally, 

the highest observed price is defined as )
2

1(*
s

HH v
A

v
o  where v

AH  is the highest price in the volume 

bucket v  and the lowest observed price is defined as )
2

1(*
s

LL v
A

v
o  where v

AL  is the lowest price in the 

volume bucket v . Following Parkinson (1980) and Corwin and Schultz (2012), we define the variance as 

the natural log of the ratio of highest price to lowest price in each volume bucket. 

22 )]
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sHH

L

H
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v
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v
A

v
A

v
o

v
o




       (eq.2) 

Expanding eq.2 yields eq.3. 
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The expected value of eq.3 yields eq.4. 
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Since expected value is a linear operator and spread is an observed value, eq.4 can be rewritten as eq.5. 
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  (eq.5) 

Parkinson (1980) shows that (i) and (ii) hold. 

i) 


 2*8
))(ln( HL

L

H
E     

ii) 22 *)2ln*4())]([ln( HL
L

H
E    where  




n

i

iHL l
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22 361.0
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i

i
i 2,1i ),ln(   

Applying the findings of Parkinson (1980) to eq.5 yields eq.6. 
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Define ),
2

2
ln(

s

s
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 2ln*4a and 



8
*2k  

222 **** cckaa
AAAAoo LHLHLH        (eq.7) 

Rearranging the terms in (eq.7) yields 

0)*(*** 222 
ooAAAA LHLHLH accka  ,    (eq.8) 

which can be solved for the actual variance of ( 
2

AALH ) given observed variance (
2

ooLH ). 

The root of (eq.8) is:  
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    (eq.9) 

The positive root of (eq.8) gives the actual variance of the stock price that is calculated by using 

the spread and observed variance in each volume bucket. We consider each volume bucket as an interval 

and calculate a volume bucket effective spread, vS  which equals two times the absolute value of the trade 

price minus the midpoint of the highest bid in volume bucket and the lowest ask in volume bucket.  

Formally:  

2/)(*2 minmax askbidpSv         (eq.10) 

 

4.  Sample and data 

The dataset for this study comes from the NASDAQ high frequency trading database, which has 

trades of 120 select NASDAQ stocks.  We use data from January 2009 through December 2009 and 

quotes from February 22, 2010 to Februarys 26, 2010. These are the only days of quote data in NASDAQ 

HFT database.  These stocks vary in terms of volume and market capitalization. The trade data has a 

millisecond timestamp and an indicator of the initiator of the trade HFT trades are labeled with an H and 

non-HFT trades are labeled with an N. The dataset contains the data of 26 trading firms, which are 

identified as high frequency traders by NASDAQ. We also use the Center for Research in Security Prices 

(CRSP) data base to obtain volume, and number of shares outstanding of the stocks during 2009.  

 

5.  Descriptive Statistics 

We have four types of trades in the HFT data. A high frequency trading firm on both sides of 

transactions is (HH) sample. A high frequency trading firm initiating a trade and a non HFT firm 

providing liquidity is (HN) sample. A non HFT trading firm initiating a trade and a HFT trading firm 

providing liquidity (NH), and no HFT trading firm on either side of the transaction (NN).  While we look 
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at each of these four types of trades, we also look at trades in which HFT trading firms are the initiators of 

trades (HH_HN), and trades in which the non HFT are the trade initiators (NN_NH). 

Table 1 reports the descriptive statistics of the VPIN measure and other variables that will be used 

in our analysis. Consistent with Easley et al. (2012-a; 2011) VPIN measure is between zero and one. 

Another interesting result in Table 1 is both volatility measures –risk and absolute return- are very close 

to each other in terms of their mean and standard deviations.  

{Insert Table 1 here} 

 

6.  Results 

In this section we summarize findings regarding our seven hypotheses in order.  

6.1.0 HFTs’ order flow toxicity analysis 

H1:  HFTs exert higher order flow toxicity on non-HFT liquidity suppliers than they do on HFT liquidity 

suppliers. 

We measure the order flow toxicity with the VPIN measure that is developed by Easley, Prado, 

and O'Hara (2012-a). We calculate VPIN for trades in 120 stocks in six different samples, which are 

categorized according to the trade initiator, or liquidity seeking side, of the trade during 2009. Our six 

samples include pure HFT trades (HH), pure non-HFT trades (NN), trades where one side is an HFT 

(non-HFT) while the other side is a non-HFT (HFT), i.e. HN and NH samples, and all HFT initiated 

trades (HHHN), all non-HFT initiated trades (NNNH), 

By applying probability of informed trading (PIN) measure, Easley et al. (1996) find that high 

volume stocks have lower probability of informed trading and vice versa. The authors explain this finding 

by different arrival rates of informed trading in different volume deciles. In the spirit of Easley et al., we 

measure order flow toxicity for overall sample as well as three different volume deciles. Each decile 

consists of forty stocks, which are sorted according to their number of shares traded in 2009.  

Figure 1 panel A illustrates the distribution of the toxicity in the overall sample and in samples 

sorted according to volume. Figure 1 shows the highest toxicity is in the pure HFT trades (HH) in the 
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overall, low volume, and medium volume samples. Regardless of trader type (HFT or non-HFT), high 

volume stocks have the lowest toxicity. When pure HFT trades (HH) are compared with pure non-HFT 

trades (NN), pure HFT trades seem to have higher toxicity than the pure non-HFT trades, except in the 

high volume sample. Another notable point in this figure is that all HFT initiated trades (HHHN) have 

higher toxicity than the all non-HFT initiated trades (NNNH) in the overall sample and across all volume 

sorted samples except the high volume sample. 

{Insert Figure 1 here} 

Table 2 summarizes the mean, median, and standard deviation of order flow toxicity measure in 

overall sample, samples sorted according to volume (columns) and samples created according to trade 

initiators (rows). To illustrate the behavior of order flow toxicity in HFT and non-HFT initiated trades; we 

calculate the cumulative probability distributions of four samples. The results are illustrated in Figure 2 

Panel A and B. Figure 2 Panel A represents cumulative probability distributions of order flow toxicity in 

the pure HFT and pure non-HFT trades. Figure 2 Panel B illustrates cumulative probability  distributions 

of order flow toxicity in all HFT initiated trades and all non-HFT initiated trades. These two panels 

vividly illustrate that distribution of non-HFT trades cross that of HFT trades at one point, and lie on the 

left order flow toxicity distribution of HFT trades for VPIN values greater than 0.4. The Figure 2 hints 

that the order flow toxicity in HFT samples and non-HFT samples are different.  

{Insert Table 2 here} 

{Insert Figure 2 here} 

 

To test the statistical significance of the observations presented in Figure 1 and Figure 2 we run 

several statistical tests, namely; the Kruskal-Wallis test and the Mann-Whitney test (also called the 

Wilcoxon rank sum test). We select these tests by following Easley et al. (1996) approach. Specifically, 

since the VPIN measure is restricted between zero and one, normality required for standard statistical 

tests may be violated. The Kruskal-Wallis test determines whether distributions of VPIN are identical 

over seven different samples (i.e. overall, HH, NN etc…) and over three different volume deciles (i.e. 1
st
, 
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2
nd

 and 3
rd

). These test statistics are given in Table 3, Panel A and B. The Wilcoxon test allows us to 

compare samples in pairs. Specifically, we test whether VPIN values in one sample higher or lower than 

another sample. These test statistics are given in Table 3, Panel C and D.   

First, we test whether order flow toxicity is different in three volume deciles, by comparing the 

2
nd

, 3
rd

, and 4
th
 columns of Table 2. According to Easley et al. (1996) lower arrival rates of uninformed 

traders to low volume stocks increases risk of informed trading in low volume stocks. The Kruskal-Wallis 

test, results reported in Table 3 Panel A, strongly rejects the hypothesis that order flow toxicity 

distributions in the three volume samples are same.   Table 3 Panel A results show that volume affects the 

order flow toxicity in overall sample, and all sub-samples created according to trade initiator.  To 

compare the samples pairwise we apply the Mann-Whitney test, results are summarized in Table 3 Panel 

C. Table 3 Panel C results show that low volume stocks have the highest risk of informed trading, it is 

followed by medium volume and high volume stocks. These findings are consistent with Easley et al. 

(1996) findings.  

{Insert Table 3 here} 

 

 Second, we test if trade initiator type matters in order flow toxicity, by comparing 2
nd

 -7
th
 rows of 

Table 2. The Kruskal-Wallis test, Table 3 Panel B, shows that samples created according to trade 

initiators have different distributions. To compare samples pairwise we apply Wilcoxon rank sum test 

whose results are summarized in Table 3 Panel D.  

We first discuss our results in the overall sample. We find that toxicity of pure HFT (HH) trades 

is 40% higher than the toxicity of pure non-HFT (NN) trades. When an HFT demands liquidity from a 

non-HFT (HN), flow toxicity decreases by 22% compared to pure HFT trades (HH). On the other hand 

when non-HFTs demand liquidity from an HFT (NH) the order flow toxicity increases by 24% compared 

to pure non-HFT trades (NN). These findings support the view that HFTs may exert toxicity on non-HFT 

traders.  
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We find interesting results when we study toxicity in the volume sorted samples. The relations 

found in overall sample are exaggerated in the low volume sample.  The pure HFT trades’ (HH) toxicity 

is 75% higher than the pure non-HFT trades (NN). All HFT initiated trades are nearly 35 % more toxic 

than the all non-HFT initiated trades. When HFTs demand liquidity from non-HFTs (HN) the toxicity 

decreases by 25% compared to pure HFT trades (HH). On the other hand when non-HFTs demand 

liquidity from HFTs (NH) the order flow toxicity increases nearly by 57% compared to pure non-HFT 

trades (NN). These findings show that the HFT toxicity on non-HFTs is a more problematic in low 

volume stocks. The medium volume statistics are similar to the findings in overall sample.  

The relations that hold in overall, low volume, and medium volume samples change in the high 

volume sample. Interestingly, pure non-HFT trade toxicity is higher than that of pure HFT trades by 53% 

in the high volume sample. The toxicity of all non-HFT initiated trades is higher than that of all HFT 

initiated trades by 30%. When HFTs demand liquidity from non-HFTs they experience 17% higher 

toxicity compared to pure HFT trades. When non-HFTs demand liquidity from HFTs they experience a 

26% decrease in toxicity compared to pure non-HFT trades.  

Overall, our results show that in the overall, medium volume, and more notably, in low volume 

samples HFTs exert a significant amount of order flow toxicity on non-HFTs. On the other hand, in high 

volume, HFTs decrease the toxicity in non-HFT trades. The analysis shows that the overall sample 

experiences higher order flow toxicity due to HFTs even though HFTs are beneficial in high volume 

stocks. The detrimental effect of HFTs in the overall sample is mainly due to the high toxicity caused by 

HFTs in low volume and medium volume stocks.  

These findings support our fist hypothesis, implying HFTs may exert higher order flow toxicity to 

non-HFT liquidity suppliers than to HFT liquidity suppliers. These findings are consistent with theoretical 

predictions of Cartea and Panelva (2011), that HFTs may cause losses to liquidity traders; of Biais, 

Foucault, and Moinas (2011), that high levels of HFT can impose adverse selection costs on slow traders 

and of Jarrow and Protter (2011), that HFTs may have a dysfunctional role in markets. Our findings also 
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support the empirical findings of Brogaard, Hendershott, and Riordan (2012) that when HFTs provide 

liquidity with non-marketable orders they may damage non-HFT liquidity suppliers. 

 

6.1.0.1 A possible explanation for HFT induced toxicity  

To provide a possible explanation for difference in HFT induced flow toxicity in different volume 

samples, we develop following argument. First following the high frequency trading literature we make 

three basic assumptions.  

Assumptions: 

1- There are two sorts of traders in the market HFT and non-HFTs. 

2- HFTs have a speed advantage; they can react to a signal faster than non-HFTs (i.e. Jarrow and 

Protter, 2011). 

3- HFTs tend to revert their positions to a mean of about zero in very short time (Kirilenko et al., 

2012). 

We examine the flow toxicity for a given level of volume ( V ) for two cases, namely; with 

HFTs and without HFTs. We compare the VPINs in a single volume bucket size of ( ) for two cases.  

Case 1: Assume that non-HFT buyer will buy  )21(   shares and HFTs will buy )(  shares. 

HTFs have a speed advantage and so they will buy )(  shares at ( 0V ), then non-HFTs buyer will 

buy )21(   shares. Since HFTs don’t hold their positions for long periods of time, HFTs revert their 

position to zero and sell )( . At this point volume bucket is filled (i.e. V ).  

By definition 

)21(

)21(

1

1












VPIN

VPIN
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Case 2: Assume that non-HFT buyer will buy  )21(   shares and there are no HFTs in the 

market. In case two, a certain non-HFT will buy )21(   shares at ( 0V ). The remaining )2( 

volume will be filled by trading (buying and selling) activities of non-HFTs. Let a non-HFT buy )(  

shares and a non-HFT sell  )2(  shares. At this point volume bucket is filled (i.e. V ). 

By definition 

)241(

)2()21(

2

2












VPIN

VPIN
 

By comparing 1VPIN and 2VPIN , we see that flow toxicity will be higher in the volume buckets 

with HFTs as long as )(   . Implying, in a fixed volume with a fixed amount non-HFT initiated 

trades, when the fraction of HFT trade is greater than non-HFT trades, toxicity will be higher. We can 

interpret this result with accordance Easley et al. (1996). Since the arrival rates of non-HFT trades 

different in low volume and high volume stocks, HFTs fraction of trades that is matched with non-HFT 

trades differs with the volume of stock. As a result HFTs cause higher flow toxicity in some deciles while 

decrease order toxicity in others.  

6.1.1 Determinants of order flow toxicity, VPIN metric.  

H2: Trade intensity and return volatility are significant determinants of the order flow toxicity measure 

VPIN. 

By definition of Easley et al. (2012-a) the toxicity measure VPIN is based on order imbalances 

and trade intensity.  Accordingly, we expect trade characteristics such as trade size and number of trades 

to be significant determinants of the metric. Easley et at. also argue that order flow is considered to be 

toxic when it causes losses to liquidity suppliers. Griffiths et al. (2000) argues that liquidity suppliers’ 

willingness is affected by the price volatility. Depending on both arguments, we expect price volatility to 

be an important determinant of the VPIN measure.  
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Our formal model is: 

 eTradeSizecTradesNocVolatilityccVPIN   1312110 ln.lnlnln , 

Detailed explanations for variable calculation procedures are given in section 2.2.  For volatility we use 

two proxies from literature; namely absolute return proxy from Easley et al. (2012) and average return 

volatility based on volume clock. We normalize our variables following the Easley et al. (2008) by taking 

their natural logarithms.  

{Insert Table 4 about here} 

Table 4 Panel A summarizes the correlation between the proposed determinants of VPIN and the 

metric itself.  Similar to Easley et al. (2012-a) findings, we find that volatility measures are positively 

correlated to the order flow toxicity in subsequent volume bucket. On the other hand number of trades and 

average trade size per trade in each bucket are negatively correlated to order flow toxicity in subsequent 

volume bucket.  

Table 4 Panel B summarizes the results of four different models. In model 1 and 2 we use two 

different volatility measures interchangeable. Also, to test if the relation between the trade intensity 

measures and VPIN metric, we include squares of the variables in these two models. In both models all of 

our control variables are statistically significant at 0.01 levels. We find that while volatility increases the 

flow toxicity, the trade intensity decreases it to some degree. However, the relation between trade 

intensity and VPIN metric is a non-linear one, since the square terms are statistically significant. Model 3 

and 4 assumes a linear relationship between trade intensity and order flow toxicity, though all 

determinants are still significant the explanatory powers of the models are lower compared to model 1 and 

2. Overall, our results show that average trade size per trade, volatility, and numbers of trades are 

important determinant of order flow toxicity.  
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6.1.2 Relation between Risk, Absolute Return and VPIN Metric 

H3: The order flow toxicity in volume bucket 1  will be related to volatility in volume bucket .  

  Easley et al. (2012-a) hypothesize that “Persistently high levels of VPIN lead to volatility.”    The 

authors examine the correlation and conditional probabilities of |1|,
1

1 









P

P
andVPIN . This 

examination is done in volume time and they find supportive evidence for their hypothesis. On the other 

hand, Andersen and Bondarenko (2013), by calculating the average absolute one minute returns (AAR) 

over five minutes and one day periods, find that the VPIN measure is negatively related with AAR. 

Andersen and Bondarenko conclude that VPIN does not have any incremental forecasting power for 

future volatility.  Both Easley et al. and Andersen and Bondarenko studies are conducted by using E-mini 

S&P 500 futures contract data. In this section, we examine the volatility and VPIN relation by using 

equity market data. Also, since our data indicates the trade initiator our VPIN measure is free from any 

trade classification errors.   

Our formal model is: 

 eVolatilitycTradeSizecTradesNocVPINccVolatility   141312110 lnln.lnlnln  

We calculate two volatility measures; first one is absolute return which is similar to Easley et al. 

Easley et al. (2012-a), and the second one is risk which is standard deviation of returns over ten sub-

volume buckets in each volume bucket. Detailed explanations for variable calculation procedures are 

given in section 2.2.  In the spirit of Easley et al. (2008) we normalize our VPIN metric and other variable 

by taking their natural logarithms. Our model tests if VPIN has any incremental predictive power after 

controlling for trade intensity factors and lagged volatility.  

{Insert Table 5 about here} 
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Table 5 Panel A summarizes correlations between volatility in volume bucket  , and VPIN and 

trade intensity in volume bucket 1 .  Consistent with Easley et al. (2012) we find that VPIN is 

positively correlated with two different volatility measures. On the other hand, trade intensity factors are 

negatively correlated with risk in returns. Table 5 Panel B reports the results of OLS three different 

regressions, in these models our volatility proxy is risk. In the first model we don’t control for trade 

intensity and find that VPIN is positively related to risk. In the second model after controlling for trade 

size we find that VPIN has positive predictive power for volatility in subsequent volume bucket. In the 

third model we control for two trade intensity factors and lagged volatility, and our results in previous 

models still holds. However, due to the high correlation between number of trades and VPIN, the results 

in model 3 must be interpreted with caution.  

Table 5 Panel C proxies the volatility with absolute return measure as in Easley et al. (2012-a). In 

model 1 test the predictive power of the VPIN individually, and finds that VPIN has a positive relation 

with volatility. Model 2 controls for lagged absolute return and model 3 controls for trade intensity and 

lagged absolute return.  Though different specifications all three models show that VPIN is positively 

related to volatility even after controlling for lagged absolute returns and trade intensity. By comparing R-

squares model 2 and model 4, we find that VPIN’s explanatory power is higher than the combined two 

trade intensity factors.  

Overall, Table 5 results provide supportive evidence that VPIN metric has positive relation with 

two different volatility measures, even after controlling for trade intensity. Moreover, VPIN’s individual 

explanatory power is higher than the trade intensity measures.  

 6.1.3 Protection against Order Flow Toxicity, FVPIN future contracts 

H4: FVPIN futures contracts provide positive returns to investors 

Order flow is toxic if it causes loses to liquidity providers (Easley et al., 2012-a). We analyze the 

toxicity in a high frequency world for two trader types i.e. HFT and non-HFT. In this section we examine 
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a futures contract, FVPIN, which is developed by Easley, Prado, and O’Hara (2011). According to 

Easley, Prado, and O’Hara securitization of toxicity measures with a contract such as FVPIN may provide 

insurance or a hedging opportunity to liquidity providers against toxicity. This contract is valued as [-

ln(VPIN)] and must be cash-settled on a daily basis.  

We test the protection power of the FVPIN contract by using the VPIN calculation of 120 stocks, 

HFT and non-HFT trade data of these stocks is provided by NASDAQ throughout 2009. We employ a 

basic strategy in which, the investor purchases the contract at the beginning of the day, by paying [P0=-

ln(VPINopen)], and sells the contract at the end of session at [P1=-ln(VPINclose)].  We calculate the annual 

average daily percentage return of this strategy for our overall sample, high volume, medium volume and 

low volume stocks.  

{Insert Table 6 about here} 

Table 6 reports the returns of FVPIN contracts for four different samples. Average daily return of 

FVPIN contract is 2.87%, implying that, for overall sample, the FVPIN contract may, on average, protect 

against toxicity. When we divide the overall sample into volume groups, we find that FVPIN is beneficial 

in all volume deciles. Specifically, FVPIN provides 4.452%, 2.755% and 1.421 % average returns in low 

volume, medium volume and high volume stocks, respectively. Though percent return on FVPIN 

contracts is smallest in the high volume stocks, the standard deviation is also smallest in high volume 

decile. When we compare coefficient of variations, across all samples, we find that high volume stocks 

bears the smallest risk for a given level of return. Figure 3 vividly reports the behavior of FVPIN contract 

returns in three different volume deciles.  

{Insert Figure 3 about here} 

Overall, in our 120 stocks sample FVPIN provides a hedging opportunity against order flow 

toxicity in overall sample and three different volume sorted samples. Figure 3 graphically illustrates the 

FVPIN results for the four samples. It clearly shows that FVPIN may provide a hedging opportunity in 
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high volume, medium volume, and low volume stocks. However the magnitude and volatility of returns 

vary across the samples.  

 

6.1.4 HFTs and stock price volatility 

The second issue our study focuses on is HFTs’ impacts on the stock price variance.  When 

examining this impact we apply a volume based variance calculation approach rather than time based one 

since Easley, Prado, and O’Hara (2012-a) argue that volume clock is more relevant than time based in a 

high frequency world. To apply a volume bar based variance calculation, we create volume buckets as in 

the order flow toxicity (VPIN) analysis in section 3.1. The observed variance is calculated by using the 

highest price and the lowest price in each volume bucket. We follow the Parkinson (1980) procedure, 

which defines  
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A detailed explanation of this methodology is given in section 3.2.  

 

6.1.4.1 Volume based observed variance comparison throughout 2009 

H5:  HFTs will increase observed stock price variance. 

We calculate the volume based observed variances of six samples in 2009 by using the 120 

stocks, the NASDAQ provided data reports HFT and non-HFT trades of these stocks. Table 7 panel A 

shows that, in the overall sample, pure non-HFT trades’ variance is nearly twice of that of the pure HFT 

trades.  Similarly all non-HFT initiated trades have a higher variance than the all HFT initiated trades. 

When we compare variances (NH) sample and (NN) sample, we find that when providing liquidity to the 

non-HFTs, HFTs decreases the variance in pure non-HFT trades by 37%.  On the other hand, comparing 
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(HH) and (HN) samples show that when HFTs demand liquidity from non-HFTs (HN), the observed 

variance increase by 66% compared to pure HFT trades (HH). Similar variance impacts of HFTs can be 

found throughout the low volume and medium volume subsamples (Panel B and C). But in high volume 

stocks variances of samples created according to trade initiators are not statistically different from one 

another.  

{Insert Table 7 about here} 

In short, when HFTs demand liquidity from non-HFTs, they increase observed variance.  This 

finding is consistent with theoretical predictions of Cartea and Penalva (2011) and Jarrow and Protter 

(2011) and empirical findings of Zhang (2010). When HFTs provide liquidity they decrease variance. 

This result is consistent with the findings of Brogaard (2010), which shows HFTs may reduce the stock 

price volatility.  

 

6.2.2 Actual versus observed variance comparison 

By solving equation 8, we calculate a variance measure that is free from the impact of bid-ask 

spread bounce, which we call an actual variance measure. We use the quote data for 120 NASDAQ stock 

for one week in 2010 to calculate the actual variances and observed variances for our sample. Table 8 

Panel A compares the actual variance and observed variance results for our one week sample. Throughout 

all seven samples we find that the actual variance is significantly smaller than the observed one.  Without 

the spread, actual variance is nearly 1.5 % lower than the observed variance in all seven samples.  

Table 8 Panel B and Panel C compare the actual and observed variances of six different 

subsamples. The observed variances in Panel mostly show a statistical difference between the observed 

variance in samples, consistent with our findings in Table 7. On the other hand, the actual variance results 

in Panel C show that the differences between the sample variances are insignificant. The differences 

between Panel B and Panel C support the views of Corwin and Schultz (2012) and O’Hara (2006) that 

spreads may have an impact on asset prices and accordingly variance. Removing these effects may 
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produce more accurate results. Another finding from Panel C is that, when impact of the spread is 

removed, there is actually no significant difference between variances of HFT trades and non-HFT trades. 

 

7. Summary and Conclusion  

In this study we examine two important questions related to HFTs by NASDAQ provided HFT 

dataset. Our first focus is on the order flow toxicity of HFTs to liquidity suppliers. We proxy order flow 

toxicity by using the VPIN measure of Easley et al. (2012-a). Our results show that all HFT initiated 

trades always have higher toxicity than the all non-HFT initiated trades in overall sample. The pure HFT 

trades (HH) have the highest toxicity in all samples except high volume stocks. When comparing pure 

non-HFT trades (NN), pure HFT toxicity is twice of that of pure non-HFTs. Toxicity problem is more 

severe in low volume stocks than high volume and medium volume stocks. With these findings we 

provide supportive empirical evidence to the theoretical predictions of Cartea, and Penalva (2011), Biais, 

Foucault, and Moinas (2012) and Jarrow, and Protter (2011) that HFTs may play a dysfunctional role in 

financial markets.  

Our examination of the main determinants of flow toxicity reveals that trade intensity and risk of 

the stock are main determinants of order flow toxicity. Trade intensity variables are negatively related to 

the order flow toxicity and these relations are non-linear. Risk is positively related to order flow toxicity.  

In addition we find that in equity markets even after controlling for trade intensity, VPIN has predictive 

power for future volatility. 

  We also examine the FVPIN future contract, a hedge tool against flow toxicity which is 

developed by Easley, Prado and O’Hara (2011).  Our results show that FVPIN may be a hedging tool 

against the toxicity losses for liquidity suppliers in all volume deciles.  

Our second focus is on the stock price variance and the HFT activities. Easley, Prado, and O'Hara 

(2012) argue that in high frequency world volume clock is more relevant than the time clock. 

Accordingly, in variance calculations we follow a volume based approach to calculate the variance. In 

addition by building on results of Corwin, and Schultz (2012) and Parkinson (1980), we develop an actual 
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variance method which eliminates the impact of spread on the observed variance. This measure shows 

that when impact of spreads is removed actual variance is lower than observed variance. When HFTs 

demand liquidity from non-HFTs the increase observed variance which is consistent with theoretical 

predictions of Cartea and Penalva (2011) and Jarrow and Protter (2011) and empirical findings of Zhang 

(2010).  When HFTs provide liquidity they decrease variance this finding is consistent with the findings 

of Brogaard (2010), which shows HFTs may reduce the stock price volatility. 
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Table 1 

Descriptive statistics for 120 NASDAQ selected stocks for 2009. 

VPIN is the toxicity measure and calculated by flowing Easley et al. (2012). Average price is the mean 

price per volume bucket.  Absolute return is the absolute value of the returns in each volume bucket, and 

calculated similar to Easley et al. (2012). Risk is the standard deviation of returns in each volume bucket 

and calculated by dividing each volume bucket into ten sub volume buckets. Trade size is average number 

of shares traded per trade. Average volume is mean volume bucket size (1/50 of average daily volume of 

each stock). 

Variable Mean Min Max St.Dev 

VPIN 0.332 0.076 1.000 0.150 

Average Price 26.611 0.240 625.100 42.070 

Absolute Return  0.003 0.000 9.691 0.010 

Risk 0.005 0.000 3.711 0.009 

Trade size 138.522 0.003 21305.710 122.826 

Average Volume 30264.740 121.929 398756.280 67006.000 
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Table 2 

Summary of VPIN Estimate Statistics 

This table presents means, medians, and sample standard deviations of VPIN estimates by volume decile 

and overall samples for the 120 stocks in our sample. The parameter VPIN is a measure of order flow 

toxicity.  ‘H’ stands for HFT trader, ‘N’ stands for non-HFT trader. In overall sample (Overall VPIN) 

trades are not separated.  In (HH VPIN) sample the initiator of the trade, liquidity seeking party, is an 

HFT and the passive side, liquidity supplier, is also an HFT. In (NN VPIN) sample the initiator of the 

trade, liquidity seeking party, is a non-HFT and the passive side, liquidity supplier, is also a non-HFT.  In 

(NH VPIN) sample the initiator of the trade, liquidity seeking party, is a non-HFT and the passive side, 

liquidity supplier, is either an HFT. In (HN VPIN) sample the initiator of the trade, liquidity seeking 

party, is an HFT and the passive side, liquidity supplier, is a non-HFT.   In (HHHN VPIN) sample the 

initiator of the trade, liquidity seeking party, is an HFT and the passive side, liquidity supplier, is either an 

HFT or non-HFT. In (NNNH VPIN) sample the initiator of the trade, liquidity seeking party, is a non-

HFT and the passive side, liquidity supplier, is either an HFT or non-HFT. Three volume deciles are 

determined according to number of shares traded in year 2009.  

  Overall sample First Decile Second Decile  Third Decile 

Number in sample 120 40 40 40 

Overall VPIN         

Mean  0.3323 0.2120 0.3220 0.4630 

Median  0.3164 0.2119 0.3224 0.4685 

Std. dev. 0.1294 0.0316 0.0718 0.1116 

HH VPIN       

Mean 0.6004 0.2184 0.6458 0.9369 

Median  0.6686 0.2044 0.6805 0.9651 

Std. dev. 0.3214 0.0545 0.1977 0.0727 

NN VPIN       

Mean 0.4293 0.3343 0.4195 0.5339 

Median  0.4177 0.3313 0.4239 0.5354 

Std. dev. 0.1156 0.0534 0.0656 0.1143 

NH VPIN       

Mean 0.5347 0.2459 0.5205 0.8378 

Median  0.4983 0.2415 0.4983 0.8647 

Std. dev. 0.2666 0.0350 0.1518 0.1120 

HN VPIN       

Mean 0.4673 0.2645 0.4278 0.7096 

Median  0.4095 0.2613 0.4130 0.7775 

Std. dev. 0.2299 0.0569 0.1283 0.1937 

HHHN VPIN      

Mean 0.4280 0.2104 0.3867 0.6868 

Median  0.3791 0.2043 0.3793 0.7424 

Std. dev. 0.2398 0.0454 0.1253 0.1967 

NNNH VPIN      

Mean 0.3885 0.2748 0.3801 0.5105 

Median  0.3766 0.2734 0.3842 0.5016 

Std. dev. 0.1220 0.0324 0.0642 0.1077 
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Table 3 

Nonparametric Tests 

The Kruskal-Wallis null hypothesis is that parameter values for all three volume samples and trader 

samples are drawn from identical populations. The alternative hypothesis is that at least one of the 

populations has greater observed values than other populations. The VPIN variable is measuring order 

flow toxicity.  The Mann-Whitney test null hypothesis is that two samples are drawn from identical 

populations. Its alternative hypothesis is that one population yields higher values. The VPIN variable is 

measuring order flow toxicity.   

Panel A: Kruskal-Wallis test on VPIN by Volume 

Sample Test statistic 

Overall 87.4202 

NN 67.8367 

HH 99.1013 

HN 84.3294 

NH 99.7731 

NNNH 87.3521 

HHHN 90.2591 

Panel B: Kruskal-Wallis test on VPIN by Trader Type 

Test Statistic 64.7727 

Critical Value for α = 0.05 is 5.991 

Panel C: Mann-Whitney Tests on VPIN 

Pairwise Comparisons (n=40, m=40) 

  Low vol. to High Vol. Med vol. to High Vol. Low vol. to Med vol. 

Overall 7.6355 48.2670 5.6725 

NN 7.0870 5.6340 4.7872 

HH 7.6932 7.5777 6.7887 

HN 7.5585 6.3942 5.9515 

NH 7.6932 7.5296 6.9523 

NNNH 7.6451 6.9234 5.6628 

HHHN 7.6739 6.8849 6.1632 

  Panel D: Wilcoxon-Mann-Whitney Test 

  Overall First decile Second decile Third decile 

HH vs. NN 2.9576 -6.7598 4.7872 7.6162 

HH vs. HN 2.4964 -4.3349 4.5947 6.0766 

NH vs. NN 1.6689 -6.6540 3.0151 7.0485 

HHHN vs. NNNH  -0.5662 -6.3749 -0.1780 4.0270 
The test statistic is normally distributed and the critical value for α=0.05 is ±1.6449 
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Table 4  

Determinants of VPIN 

VPIN (τ) is the toxicity in the volume bucket (τ). Risk (τ-1) is the standard deviation of returns in volume 

bucket (τ-1) and calculated by dividing the volume bucket into ten equal sub volume buckets. No. of 

trades (τ-1) is the number of trades occurred in volume bucket (τ-1). Trade size (τ-1) is the average 

number of shares traded in volume bucket (τ-1). Return (τ-1) is the absolute return in volume bucket (τ-

1) and calculated similar to Easley et al.  (2012). In Panel B, all models are OLS models. Model 1 and 

model 2 full models. Model 3 and model 4 drops the squares of the trade intensity variables. 

Panel A: Pearson Correlation Coefficients (Rho) 

  VPIN(τ) Risk(τ -1) No. of Trades(τ -1) Trade size (τ -1) Return (τ -1) 

VPIN(τ) 1.0000     

Risk(τ -1) 0.3919 1.0000    

No. of Trades(τ -1) -0.6941 -0.4324 1.0000   

Trade size (τ -1) -0.2821 -0.1724 -0.0922 1.0000  

Return (τ -1) 0.0897 0.2955 -0.0169 -0.0540 1.0000 

 Panel B: Multivariate Analysis of determinants of  VPIN 

VPIN(τ) Model 1 Model  2 Model 3 Model  4 

Risk(τ -1) 0.01698  0.00821  

Return(τ -1)  0.00580  0.012753 

No. of Trades(τ -1) -0.40566 -0.39794 -0.17226 -0.17442 

No. Trades(τ -1)2 0.02575 0.02434   

Trade size(τ -1) -0.10774 -0.11684 -0.14887 -0.14949 

Trade size(τ -1)2 0.00997 0.01031   

Cons 0.28598 0.25553 0.21561 0.26663 

R-Squared      0.6824 0.6814 0.6035 0.6060 

All coefficients are significant at 0.01 levels.   
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Table 5 

Relations between Risk, Return and VPIN 

Risk (τ) is the standard deviation of returns in volume bucket (τ) and calculated by dividing the volume 

bucket into ten equal sub volume buckets. Return (τ) is the absolute return in volume bucket (τ) and 

calculated similar to Easley et al.  (2012). VPIN (τ-1) is the toxicity in the volume bucket (τ-1). Volume (τ-

1) is the number of trades occurred in volume bucket (τ-1). In Panel B, all models are OLS models with 

dependent are variable as risk. Model 1 measures the predictive power of VPIN after controlling only 

lagged risk. Model 2 tests impact of VPIN on risk, after controlling one trade intensity variable and 

lagged risk variable. Model 3 includes all trade intensity variables and lagged risk variable. In panel C all 

models are OLS models with dependent variable as absolute return. Model 1 shows the individual 

predictive power of VPIN metric. Model 2 controls for lagged absolute return while model 3 controls for 

lagged absolute return and trade intensity proxy. Model 4 measures explanatory power of trade 

intensity for volatility after controlling lagged absolute return. 

 Panel A: Pearson Correlation Coefficients (Rho) 

  Risk(τ) Abs. Return (τ) VPIN(τ-1) Trade size(τ-1) No. of Trades(τ-1) 

Risk(τ) 1.0000     
Abs. Return (τ) 0.2919 1.0000    
VPIN(τ-1) 0.3992 0.0830 1.0000   
Trade size(τ-1) -0.1668 -0.0326 -0.2823 1.0000  
No. of Trades(τ-1) -0.4436 -0.0226 -0.6956 -0.0816 1.0000 

Panel B: Risk and VPIN Multivariate Analysis 

Risk(τ) Model 1 Model  2 Model  3 

VPIN(τ-1) 0.29133 0.28700 0.04593 
Risk(τ-1) 0.70849 0.70794 0.67817 

No. of Trades(τ-1)   -0.08295 
Trade size(τ-1)  -0.00757 -0.05445 
Constant -1.38151 -1.3544 -1.27649 

R-Squared 0.5818 0.5818 0.5892 

Panel C: Absolute Return and VPIN Multivariate Analysis 

Return(τ) Model  1 Model 2 Model  3 Model 4 

VPIN(τ-1) 0.38157 0.382615 0.26313  
Return(τ-1)  0.25753 0.25688 0.26030 
No. of Trades(τ-1)    -0.04155 
Trade size(τ-1)   -0.02452 -0.02533 
Constant -6.38574 -4.7420 -4.6557 -4.77325 

R-Squared 0.0081 0.0741 0.0743 0.0699 

All coefficients are significant at 0.01 levels. 
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Table 6: FVPIN Contract Annual Returns Analysis 

Value of FVPIN contract is defined as [-ln(VPIN)], we assume the investor buys the contract at the 

beginning of the day, and sells it at the end of each day throughout 2009. The VPIN measure is the 

overall VPIN calculated for 120 select NASDAQ stocks in 2009. Table-6 summarizes mean, median and 

standard deviation of average (%) return of each sample when an investor follows the above defined 

trading strategy. Coefficient of variation is ratio of standard deviation to mean.  

 
Mean Median 

Standard 
Deviation 

Coefficient 
of Variation 

Overall Sample 2.876% 2.328% 2.165% 0.7529 

Low Volume 4.452% 4.018% 2.779% 0.6242 

Medium Volume 2.755% 2.568% 2.779% 1.0080 

High Volume 1.421% 1.341% 0.579% 0.0004 
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Table 7: Volume based observed variance comparison throughout 2009 

Mean_1 refers to mean observed variance of the first sample in each compared pair. Mean_2 refers to the 

second sample in compared pair. Difference equals to Mean_1 minus Mean_2. All values are multiplied 

by 100.  T-stat. and P-value are the statistics of T-test that tests the null hypothesis of difference equals to 

zero.*, **, *** are significant at 10%, 5% & 1% levels respectively. The sample period is the year 2009. 

  Mean_1 Mean_2 Difference P-value 

Panel A: Overall Sample 

HH vs. NN 0.234 0.512 -0.278*** 0.0001 

HH vs. HN 0.234 0.388 -0.154*** 0.0001 

NH vs. NN 0.322 0.512 -0.190*** 0.0001 

HHHN vs. NNNH 0.351 0.652 -0.300*** 0.0001 

Panel B: Low Volume 

HH vs. NN 0.057 0.638 -0.580*** 0.0001 

HH vs. HN 0.057 0.328 -0.271*** 0.0001 

NH vs. NN 0.186 0.638 -0.452*** 0.0001 
HHHN vs. NNNH 0.351 0.652 -0.300*** 0.0001 

Panel C: Medium Volume 

HH vs. NN 0.335 0.592 -0.257*** 0.0001 

HH vs. HN 0.335 0.559 -0.223*** 0.0001 

NH vs. NN 0.494 0.592 -0.098* 0.0789 

HHHN vs. NNNH 0.540 0.541 -0.001 0.9939 

Panel D: High Volume 

HH vs. NN 0.309 0.306 0.003 0.9392 

HH vs. HN 0.309 0.278 0.030 0.4123 

NH vs. NN 0.286 0.306 -0.020 0.5837 

HHHN vs. NNNH 0.222 0.223 -0.002 0.9542 
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Table 8: Actual versus Observed variance 

Table 8 Panel A compares differences between observed variance, calculated as a classical way, and 

actual variance, calculated by using the measure we developed and considers the impact of the spreads 

on the observed variance. Panel B compares differences between observed variances of six samples. 

Panel C compares differences between actual variances of six samples. The sample period is as the week 

of Feb 22 – 26, 2010.    

Panel  A: Overall sample 

  Observed  Var. Actual Var. Diff.(%) P-value 

Overall 0.6015 0.5881 1.34*** 0.0001 

HN 0.6013 0.5882 1.31*** 0.0001 

NH 0.6013 0.5868 1.46*** 0.0001 

HH 0.6012 0.589 1.23*** 0.0001 

NN 0.6014 0.586 1.46*** 0.0001 

NNNH 0.6014 0.5872 1.42*** 0.0001 

HHHN 0.6013 0.5887 1.26*** 0.0001 

Panel  B: Observed variance comparison of  subsamples 

  Mean_1 Mean_2 Diff.(%) P-value 

HH vs. NN 0.6012 0.6014 -0.017*** 0.0001 

NH vs. NN 0.6013 0.6014 -0.007 0.1083 

HH vs. HN 0.6012 0.601 -0.008** 0.0472 

HHHN vs. 
NNNH 

0.6013 0.6014 -0.011** 0.0146 

Panel  C:  Actual variance comparison of  subsamples 

  Mean_1 Mean_2 Diff.(%) P-value 

HH vs. NN 0.5890 0.5868 0.2160 0.3840 

NH vs. NN 0.5868 0.5868 -0.0030 0.9910 

HH vs. HN 0.5890 0.5882 0.0722 0.7696 

HHHN vs. 
NNNH 

0.5887 0.5872 0.1470 0.5486 
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Figure 1  

This figure shows the VPIN in the overall sample and three samples sorted by volume. VPIN measure is 

calculated following Easley et al.  (2012-a) methodology. The samples consist of 120 select NASDAQ 

stocks for the entire year of 2009. Volume is the number of shares traded in 2009.  
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Figure 2    

Figure 2 Panel A shows cumulative probability distributions of VPIN metric in pure HFT trades and pure 

non-HFT trades. Figure 2 Panel B shows cumulative probability distributions of VPIN metric in all HFT 

initiated trades and all non-HFT initiated trades.  Sample is the same as the one in Figure 1.  

Figure 2 Panel A 

 

 

Figure 2 Panel B 
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Figure 3 

Value of FVPIN contract is defined as [-ln(VPIN)], we assume the investor buys the contract at the 

beginning of the day, and sells it at the end of each day throughout 2009. The VPIN measure is the 

overall VPIN calculated for 120 select NASDAQ stocks in 2009. Figure shows the average FVPIN contract 

returns for three volume deciles. Volume is the number of shares traded in 2009.  
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