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Abstract 

 

Theory predicts that a cryptocurrency may fail if blockchain congestion 

causes users to exit. I examine this prediction using congestion episodes 

caused by more than 9,000 triggers for ransomware attacks over a four-year 

period. Congestion leads to exit by some users due to increased blockchain 

transaction costs. Such users often migrate from the blockchain to crypto 

exchanges. Migration puts a constraint on mining rewards, potentially leading 

to a cryptocurrency failure in the long run. 
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1. Introduction 

Block size limit is often perceived as a major blockchain inefficiency. When the 

number of pending transactions exceeds the maximum block size, blockchain users incur 

congestion costs. There is, however, no technological limit to block size.1 Instead, the 

blockchain capacity limit is intentional, as it serves the purpose of creating congestion and 

thereby engaging users in fee competition. The fees provide blockchain miners with 

compensation for maintaining a reliable blockchain. The blockchain users, however, may 

choose an alternative means of transaction settlement in response to blockchain congestion. I 

examine how the above mechanism responds to exogenous shocks to demand for blockchain 

settlement.  

I rely on the theory of Easley, O’Hara and Basu (2018) and address implications that 

could not be explored in their empirical setup. Specifically, Easley, O’Hara and Basu (2018) 

show empirically that the number of fee-paying users and transaction fees increase when more 

users have entered the line for blockchain settlement (also known as the memory pool). Their 

empirical model assumes that the memory pool size and the number of transactions is 

exogenous to congestion. I relax this assumption and explore the decisions made by exogenous 

(ransomware attack-related) and endogenous (ransomware attack-unrelated) blockchain users. 

This allows testing of the implications of the theory about the exit of endogenous users during 

the inflow of exogenous ones. 

Consistent with the theory of Easley, O’Hara and Basu (2018), I find that the 

endogenous demand for blockchain settlement shrinks during positive shocks to the exogenous 

                                                           
1 Blockchain protocol can be modified to eliminate congestion. For example, Red Belly Blockchain can process 

up to 700,000 transactions per second: http://redbellyblockchain.io/Benchmark.html 

http://redbellyblockchain.io/Benchmark.html
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demand. Nevertheless, endogenous demand does not typically completely offset exogenous 

demand shocks. Therefore, the total number of transactions increases during the exogenous 

demand shocks resulting in congestion. 

A congested blockchain makes users choose between two options. The first one is to 

compete for execution priority by paying higher transaction fees. Such equilibrium has been 

proposed by Huberman, Leshno and Moallemi (2017), Easley, O’Hara and Basu (2018) and 

Iyidogan (2018). The alternative option is to allow more time for transaction confirmation 

without engaging in competition for execution priority. This possibility is suggested by the 

empirical analysis of Easley, O’Hara and Basu (2018). Specifically, they find that the 

relationship between the number of transactions and transaction fees is uncertain and may be 

even negative.  

The data reveals that the average blockchain user chooses the first option. During 

congestion episodes, an average fee-paying user has to wait longer for a transaction to be 

included in the blockchain. The average fee paid per transaction increases by 12%, which 

suggests that users engage in competition for execution priority.  

A block miner receives the sum of fees attached to transactions in the block as 

compensation for mining. The stronger the congestion, the higher the compensation the miner 

should expect. Transaction fees are, however, not the only source of mining reward. Several 

coins are minted and distributed to miners when a block is found. The majority of blockchains 

have caps on the total number of coins and the number of newly minted coins is decreasing 

over time. Thus, the congestion-induced reward (CIR) will become the primary source of 

mining compensation in the long run.  
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Huberman, Leshno and Moallemi (2017) emphasize the role of congestion in creating 

a reward for mining. Specifically, a mining reward should be high enough to ensure blockchain 

reliability. Nevertheless, the CIR alone may be insufficient to ensure such reliability. In other 

words, users may sooner switch to alternative means of transaction processing than pay fees 

sufficient to provide adequate compensation to a miner for investment in the reliable mining 

infrastructure. In line with this, Abadi and Brunnermeier (2018) argue that a large mining 

reward renders the risk of a blockchain failure negligible. Budish (2018) theoretically shows 

that reliable blockchains should offer the mining reward equal to at least 30% of the highest-

value transactions that are possible through the system.  Although the data does not allow 

determining what level of the CIR is sufficient to ensure blockchain reliability, I can estimate 

the upper bound to the fees per fixed size block that congested users agree to pay. This brings 

the literature one step closer to answering the question whether the blockchain can be reliable 

over the long term. In this study, I find that such an upper bound exists. Specifically, the CIR 

does not typically exceed $2,800 per block even when the demand for blockchain settlement 

becomes extremely high. 

Finally, I look at the market for the cryptocurrency underlying the congested 

blockchain. Specifically, I explore how traders on Gemini exchange react to blockchain 

congestion. Gemini fits the purpose of this study especially well because it is very unlikely to 

be affected by ransom payments mechanically. It is not well suited to process the transactions 

initiated by ransom payers or payees. Ransomware countdown timer typically allows up to 

three days for payment while it takes at least four days to withdraw cryptocurrency from 
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Gemini.2 This makes Gemini unattractive for ransomware attack victims who are pressured to 

acquire and pay cryptocurrency immediately. Gemini does not allow anonymous withdrawal 

of funds, which makes it unattractive for cybercriminals. As such, it is unlikely that 

cryptocurrency trading on Gemini is mechanically affected by ransom payments. 

Cryptocurrency exchanges, such as Gemini, do not rely on the blockchain for trade 

settlement within the exchange. A coin circulating on the exchange remains in the centralized 

exchange wallet until one of the traders decides to withdraw it. Blockchain settlement is 

required only when a coin is transferred between the exchange and the traders. Within the 

exchange, the coins circulate with sub-microsecond latency between traders’ accounts.  

Although the exchange architecture allows congestion-free settlement, it is vulnerable 

to cybersecurity threats. A hacker may compromise the centralized exchange wallet and steal 

the coins. According to the SEC (2018), wallet thefts cause significant losses to coin investors. 

For instance, such thefts occurred when hackers compromised the centralized wallets of Mt. 

Gox (2011-2013) and Coincheck (2018). Biais, Bisiere, Bouvard, Casamatta and Menkveld 

(2018) argue that such coin thefts constitute a fundamental risk for cryptocurrency investors. 

The discovery of software vulnerabilities may increase the chance of theft from the 

exchange. Although individual wallets are also subject to theft, they are much less attractive 

to hackers because the resources invested in stealing the wallets and decoding individual 

passwords may exceed the value of the coins. A cryptocurrency exchange, however, can not 

efficiently protect itself from theft by splitting coin reserves into numerous wallets. According 

to Jain, Felten and Goldfeder (2018) the cybersecurity risk associated with coin transfer within 

                                                           
2 https://medium.com/gemini/instant-ach-deposits-are-here-795c9bdbac1 

https://medium.com/gemini/instant-ach-deposits-are-here-795c9bdbac1
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the exchange wallets often outweighs the risk of keeping a large number of coins in a 

centralized hot wallet.  

On the one hand, a cryptocurrency exchange with a centralized wallet may attract a 

higher demand when ransomware activity leads to blockchain congestion. On the other hand, 

traders have incentive to avoid such an exchange when the coin theft risk increases. The 

empirical investigation suggests that ransomware activity leads to an increase in exchange coin 

trading despite the coin theft risk. On average, the exchange volume increases by 13% with 

one standard deviation shock to the number of severe vulnerabilities. Exchange transaction 

costs measured by the effective spread and implementation shortfall appear to be insensitive 

to congestion. 

The remainder of the paper is as follows. Section 2 discusses the relationship between 

ransomware attacks and the demand for blockchain settlement. Section 3 describes the data 

and variables. Section 4 discusses the main results. Section 5 reports robustness tests. Section 

6 concludes. 

 

2. Ransomware attacks and demand for blockchain transactions 

Counterparties enjoy anonymity under blockchain technology. A strand of literature 

has raised the concern that such an opaque transaction system has high social cost (Malinova 

and Park, 2017; Ma, Gans and Tourky, 2018; Williamson, 2018) and facilitates illegal activities 

(Brill and Keene, 2014; Böhme, Christin, Edelman and Moore, 2015; Brown, 2016). For 

example, Athey, Parashkevov, Sarukkai and Xia (2016) find that a substantial amount of 

identifiable Bitcoin blockchain addresses are involved in ransomware money processing, 

contraband, gambling and money laundering. Foley, Karlsen and Putniņš (2018) show that half 
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of all Bitcoin transactions are associated with illegal activities. In fact, Bitcoin proves to be 

very sensitive to darknet market disruptions.3 

Ransomware attacks cause shocks to the demand for blockchain transactions. 

According to Athey et al. (2016), CoinVault and CryptoLocker demanded ransom through the 

Bitcoin blockchain. Although these pieces of ransomware were active for a relatively short 

period, their average daily transaction rate ended up among the highest in the sample. I use 

such shocks to test the implications of blockchain congestion. 

Hackers take advantage of system vulnerabilities to deploy ransomware on victims’ 

computers. Once ransomware is deployed, it encrypts files with certain extensions such as .txt, 

.pdf and .jpeg. The purpose of the selective file encryption is to limit a victim’s ability to access 

and modify valuable information yet leave the system bootable. When the reboot happens, 

ransomware invokes a message specifying the amount of ransom, the hacker’s Bitcoin wallet 

address and the time left for the victim to pay the ransom (see Figure 1). If the victim pays the 

ransom, the hacker may either release the password for file decryption or continue demanding 

even higher ransom, thus further increasing the number of transactions if the victim agrees to 

pay.  

[Figure 1] 

The life of a severe vulnerability is fleeting. Software vendors rush to come up with 

updates to patch the holes through which ransomware infiltrates. The short life of exploitable 

vulnerabilities incentivizes hackers to act opportunistically and attempt large-scale 

ransomware attacks despite potential frictions due to blockchain congestion. The number of 

                                                           
3 https://www.theguardian.com/technology/2013/oct/03/bitcoin-price-silk-road-ulbricht-value 

https://www.theguardian.com/technology/2013/oct/03/bitcoin-price-silk-road-ulbricht-value
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such ransomware attacks may reach 638 million per year.4 The victims of ransomware attacks 

often choose to pay the ransom to restore the encrypted files. For instance, Choi, Scott and 

LeClair (2016) report that 85% of U.S. police departments affected by ransomware attacks 

paid the ransom to hackers. As a result, demand for blockchain transactions spikes when severe 

vulnerabilities are discovered. 

 

3. Data and variables 

3.1 Blockchain and exchange data 

The primary data on blockchain comes from blockchain.info. This source has been used 

by Biais, Bisière, Bouvard and Casamatta (2018), Easley, O’Hara and Basu (2018) and 

Pagnotta and Buraschi (2018). The data consists of the daily metrics of the Bitcoin blockchain. 

Hackers typically choose the Bitcoin blockchain as a means of ransom processing due to its 

anonymity, popularity and reliability. Although some ransomware may allow victims to pay 

through other blockchains, the Bitcoin blockchain is the most popular. According to Symantec, 

ransomware almost exclusively asks for payment using Bitcoins.5 

Bitcoin experienced a sharp spike in speculative demand at the end of 2017. To avoid 

any impact of this spike, I exclude this period from the sample. The resulting sample spans 

from January 2014 to November 2017. 

I obtain the limit order book data from Gemini – a US-based cryptocurrency exchange.  

One of the most important properties of Gemini is that it is unlikely to be affected by ransom 

processing mechanically. In contrast to some other active cryptocurrency exchanges, Gemini 

                                                           
4 https://www.forbes.com/sites/leemathews/2017/02/07/2016-saw-an-insane-rise-in-the-number-of-

ransomware-attacks/#3485ad2458dc 
5 https://www.symantec.com/connect/blogs/dawn-ransomwear-how-ransomware-could-move-wearable-devices 

https://www.forbes.com/sites/leemathews/2017/02/07/2016-saw-an-insane-rise-in-the-number-of-ransomware-attacks/#3485ad2458dc
https://www.forbes.com/sites/leemathews/2017/02/07/2016-saw-an-insane-rise-in-the-number-of-ransomware-attacks/#3485ad2458dc
https://www.symantec.com/connect/blogs/dawn-ransomwear-how-ransomware-could-move-wearable-devices
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does not allow anonymity of counterparties. This makes it unattractive to hackers who need to 

convert collected ransom to cash. Gemini design also does not allow quick withdrawal of 

cryptocurrency, which makes ransomware attack victims to purchase cryptocurrency 

elsewhere. 

Among all cryptocurrency exchanges, Gemini comes the closest to the conventional 

electronic trading venues. Gemini implements the Market Data Integrity Policy and distributes 

the limit order book history through the Chicago Board Options Exchange (CBOE). Moreover, 

it does not have deposit/withdrawal fees unlike the other cryptocurrency exchanges. This 

makes it even closer to the conventional trading venues. The limit order book data covers the 

interval from January 2016 to November 2017. 

 

3.2 Blockchain and exchange variables 

In pursuit of anonymity, hackers typically do not use the same address to collect all 

ransom payments (Kshetri and Voas, 2017). Moreover, the ransom often travels through 

multiple wallets before the hackers cash it out (Foley, Karlsen and Putniņš, 2018). As such, 

regular blockchain addresses are unlikely to be involved in ransom processing. Thus, 

transactions involving these addresses reflect the endogenous demand for blockchain 

settlement. The remaining transactions reflect both endogenous and exogenous demand 

(ransom processing). I split all blockchain transactions into transactions involving regular and 

ad hoc addresses: 

𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙𝑡 = 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑡 + 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐𝑡, 
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where 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑡 is the daily number of transactions involving the blockchain’s one 

hundred most popular addresses and 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐𝑡 is the number of transactions excluding 

the regular addresses.  

The result of the above decomposition is reported in Table 1, Panel A. On an average 

day, regular addresses are involved in 7.7 thousand transactions while 171.5 thousand 

transactions are processed though ad hoc addresses. 

[Table 1] 

Blockchain congestion occurs when the number of transactions lined up for 

confirmation exceeds the maximum block size. When the average number of transactions per 

block is increasing, there is a higher potential for congestion to occur. I estimate the average 

daily number of transactions per block as follows: 

𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑡 =
𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙𝑡

𝐵𝑙𝑜𝑐𝑘𝑠𝑡
, 

where 𝐵𝑙𝑜𝑐𝑘𝑠𝑡 is the number of blocks mined on the day 𝑡.  

The remaining blockchain variables capture the congestion outcome. 𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒𝑡 

measures the average daily processing time of the fee-paying transactions, while 

𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶𝑡 and 𝐹𝑒𝑒𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝐵𝑇𝐶𝑡 show the fees per transaction and the total value of 

fees attached per block, respectively. 

Limit order book data allows determining whether blockchain congestion affects the 

market for underlying cryptocurrency. Specifically, I test whether liquidity providers demand 

higher compensation when the blockchain is congested. I use two estimates of transaction 

costs: effective spread and implementation shortfall. Effective spread is defined as follows: 
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𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑆𝑝𝑟𝑒𝑎𝑑𝑡 =
2𝑞𝑡(𝑝𝑡 − 𝑚𝑖𝑑𝑡)

𝑚𝑖𝑑𝑡
, 

where 𝑝𝑡 is the execution price, 𝑞𝑡 is the trade direction indicator equal to one for buyer-

initiated trades and negative one for seller-initiated trades and 𝑚𝑖𝑑𝑡 is the average of the best 

bid and ask quotes at time 𝑡. The intraday effective spread is time-weighted to obtain daily 

estimates. 

The implementation shortfall shows how much a price yields to an order. According to 

Hendershott, Jones and Menkveld (2013), the implementation shortfall constitutes the 

substantial component of execution costs. For every market order, I measure the 

implementation shortfall as follows: 

𝐼𝑚𝑝𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙𝑡 =
2𝑞𝑡(𝑝0,𝑡 − 𝑝�̅�)

𝑝0,𝑡
, 

where 𝑝0,𝑡 is the price of the first quote hit by a market order and 𝑝�̅� is the average execution 

price of a market order. I average the implementation shortfall across all trades to obtain the 

daily estimates. 

Panel B of Table 1 reports limit order book summary statistics. Execution costs are 

rather low in the sample. The mean effective spread is less than 2bps. On average, the 

implementation shortfall accounts for 25% of the effective spread. 

 

3.3 Vulnerability data 

The data on vulnerabilities comes from the National Vulnerability Database 

(nvd.nist.gov) – a U.S. government repository of cybersecurity threats. The database is 
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populated with the intention to list all publicly known vulnerabilities and exposures.6 The 

National Vulnerability Database (NVD) distributes newly listed vulnerabilities though the 

public data feed. 

The database administration acknowledges that public dissemination of newly 

discovered vulnerabilities may help hackers exploit them. Despite this, the cybersecurity 

community believes that the benefits of such dissemination outweigh the risks. Numerous 

cybersecurity-related organizations including commercial security tool vendors, academia, 

research institutions, government departments and agencies and end-users of vulnerability 

information support sharing information on vulnerabilities.7 

In addition to the identification, collection and dissemination of vulnerabilities, the 

NVD examines the severity of the newly discovered vulnerabilities. The vulnerabilities are 

scored by their severity on a scale of 1 to 10 according to the Common Vulnerability Scoring 

System (CVSS). The score depends on a number of factors such as the vulnerability 

complexity, the potential to compromise the system and the attacker’s visibility. I discuss 

further details of the CVSS scoring system in the Appendix. 

The NVD classifies vulnerabilities with a score above 7.0 as highly severe. The 

discovery of such vulnerabilities is indicative of ransomware attacks. Figure 2 shows that there 

is a spike in the number of severe vulnerabilities around the day the new ransomware is listed 

in the Symantec dictionary.8 The data on vulnerabilities, however, has several advantages over 

the Symantec dictionary: First, a ransomware attack may not be successful: it is the severity of 

exploited vulnerability that defines the hacker’s success. Second, some older ransomware can 

                                                           
6 http://cve.mitre.org/about/faqs.html#cve_list_contain_all_vulnerabilities 
7 http://cve.mitre.org/about/faqs.html#hackers_break 
8 https://www.symantec.com/security-center/a-z 

http://cve.mitre.org/about/faqs.html#cve_list_contain_all_vulnerabilities
http://cve.mitre.org/about/faqs.html#hackers_break
https://www.symantec.com/security-center/a-z
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be recycled to exploit newly discovered vulnerabilities. Third, Symantec does not always make 

a distinction between ransomware and trojans. Thus, I only use data on severe vulnerabilities 

in the further analysis. 

[Figure 2] 

Figure 3 shows the daily number of severe vulnerabilities discovered in the sample 

period (9,397 in total). Table 2 reports the breakdown of these vulnerabilities by software 

vendors. Although the total number of software vendors exceeds one thousand, the distribution 

of vulnerabilities is rather skewed. Almost two thirds of all severe vulnerabilities are found in 

the products of only ten most popular software vendors. Among these top ten, Microsoft, 

Google and Adobe are responsible for one third of severe vulnerabilities. This allows 

ransomware to spread rapidly within the network of common software users (Goyal and Vigier, 

2014 and Acemoglu, Malekian and Ozdaglar, 2016). As such, severe vulnerabilities typically 

allow hackers to demand ransom from a massive number of victims. 

[Figure 3] 

[Table 2] 

 

4. Results 

4.1 Demand for blockchain settlement 

An exogenous shock to demand for blockchain settlement may not lead to congestion 

if the endogenous users cease their demand substantially. Theory models predict that 

blockchain users will resort to alternative means of payment when congestion costs increase. 

This reaction by users may mitigate the total demand and prevent congestion. I examine how 
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vulnerability releases impact the total and the endogenous demand for blockchain transactions. 

Specifically, I estimate the following linear model: 

𝐷𝑒𝑝𝑉𝑎𝑟𝑡 = 𝛽1𝑉𝑢𝑙𝑛𝑡 + 𝛽2𝑉𝐼𝑋𝑡 + 𝛽3𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡, 

where 𝐷𝑒𝑝𝑉𝑎𝑟𝑡 is one of three variables: the total number of blockchain transactions, the 

transactions involving regular addresses and transactions involving ad hoc addresses; 𝑉𝑢𝑙𝑛𝑡 is 

the number of severe vulnerabilities; 𝑉𝐼𝑋𝑡 is the level of the CBOE volatility index. 𝑉𝐼𝑋 enters 

the model to control for the possible impact of cybersecurity risks on trading activity (Mitts 

and Talley, 2018).9 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of the Bitcoin cryptocurrency. This variable 

controls for the non-linear upward trend in demand for the Bitcoin blockchain settlement. All 

regressions are estimated with standardized and demeaned variables. Thus, the intercept term 

is omitted from the model. 

The results in Table 3 Column 1 show that the total number of blockchain transactions 

increases with the number of exploitable vulnerabilities. Specifically, a one standard deviation 

shock to the number of severe vulnerabilities corresponds to the 5% increase in blockchain 

transactions. As such, the total demand for blockchain settlement is increasing with increase 

in exogenous demand. 

[Table 3] 

Next, I examine whether there is any evidence of endogenous users forgoing 

blockchain settlement when the exogenous demand goes up. To avoid detection, hackers prefer 

to collect money to multiple ad hoc addresses instead of using the same address for all ransom 

processing. Moreover, they often try to hide their activity by moving money between multiple 

                                                           
9 I further explore this possibility in the robustness section. 
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wallets of their own before cashing out. This further increases the demand for blockchain 

transactions. In contrast, regular blockchain addresses are unlikely to be involved in ransom 

collection. Therefore, transactions through regular addresses represent the endogenous demand 

for blockchain settlement. 

I decompose all transactions into those involving regular and ad hoc addresses. The 

results of this decomposition are reported in Table 3 Columns 2 and 3. Vulnerability releases 

have the opposite effect on the number of transactions involving ad hoc and regular addresses. 

Consistent with the theory predictions, the endogenous demand from regular addresses 

declines when demand from ad hoc addresses increases. Nevertheless, the coefficient on the 

endogenous demand has lower economic and statistical significance. This suggests that some 

endogenous blockchain users choose to continue running transactions through blockchain 

despite the potential congestion costs. 

 

4.2 Congestion costs 

Blockchain congestion occurs when demand for blockchain transactions exceeds 

blockchain capacity. Specifically, the number of transactions recorded per block has a limit. 

When the number of transactions exceeds this limit, transaction initiators face a choice between 

two options.  

The first option is to attach a fee to the transaction. This fee will increase the 

transaction’s priority. According to Aune, Krellenstein, O’Hara and Slama (2017), blockchain 

users have incentive to attach a fee because waiting costs are magnified by the risk of front-

running. This fee, however, does not guarantee that the transaction is written into the next 

block. Transaction initiators can further increase this priority by paying even higher fees. 
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Importantly, the limit on transactions per block does not change with the total value of the 

attached fees. As such, even if all transaction initiators choose to attach very high fees, the 

congestion will not be resolved.  

The second option is to allow more time for transaction processing without attaching a 

fee. Although waiting costs incentivize an individual user to attach the fee, the user may decide 

to forgo the fee to avoid triggering other users to attach even higher fees. In line with this, 

Pappalardo, Matteo, Caldarelli and Aste (2017) estimate that waiting time for 20% of Bitcoin 

blockchain transactions exceeds thirty days.  

The results are consistent with the theory models predictions that users prefer the first 

option to the second one. Table 4 shows that transaction costs increase by 9% when the number 

of released vulnerabilities increases by one standard deviation. Thus, blockchain users react to 

congestion by increasing the average transaction cost. The increase in transaction costs, 

however, does not resolve the congestion. An average fee-paying user ends up waiting longer 

despite the increase in transaction cost. 

[Table 4] 

 

4.3 Mining reward 

Competitive mining prevents double spending (Abadi and Brunnermeier, 2018; Biais 

et al., 2018; Budish, 2018 and Pagnotta, 2018) and settlement fails (Chiu and Koeppl, 2018). 

Although transaction fees increase during congestion, this finding does not imply that 

transaction fees alone would be sufficient to ensure blockchain reliability. It may well be that 

no attainable level of congestion is sufficient to maintain blockchain reliability if all mining 
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reward comes from fees.10 Budish (2018) and Huberman, Leshno and Moallemi (2018) suggest 

that blockchain can only be viable when the equilibrium congestion-induced reward (CIR) 

exceeds the minimum amount required for reliable mining. Although the data does not allow 

determining what level of CIR is sufficient to ensure blockchain reliability, I can estimate the 

limit to the fees per block that congested users agree to pay. The limit is reached when a further 

increase in ransomware activity no longer increases the CIR. I use the following model to find 

whether such a limit exists: 

𝐶𝐼𝑅𝑡 = 𝛼 + 𝛽1𝑉𝑢𝑙𝑛1𝑡 + 𝛽2𝑉𝑢𝑙𝑛2𝑡 + 𝛽3𝑉𝑢𝑙𝑛3𝑡 + 𝛽4𝑉𝑢𝑙𝑛4𝑡 + 𝛽5𝑉𝑢𝑙𝑛5𝑡 + 𝛽6𝑉𝑢𝑙𝑛6𝑡

+ 𝑉𝐼𝑋𝑡 + 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 

where 𝐶𝐼𝑅𝑡 is the mean daily mining reward per block coming from transaction fees, 𝑉𝑢𝑙𝑛1𝑡 −

𝑉𝑢𝑙𝑛6𝑡 are dummy variables equal to 1 if the number of severe vulnerabilities lies within a 

certain interval. Specifically, 𝑉𝑢𝑙𝑛1𝑡 = 1 if 0 < 𝑁 ≤ 3, 𝑉𝑢𝑙𝑛2𝑡 = 1 if 3 < 𝑁 ≤ 10, 

𝑉𝑢𝑙𝑛3𝑡 = 1 if 10 < 𝑁 ≤ 20, 𝑉𝑢𝑙𝑛4𝑡 = 1 if 20 < 𝑁 ≤ 30, 𝑉𝑢𝑙𝑛5𝑡 = 1 if 30 < 𝑁 ≤ 40 and 

𝑉𝑢𝑙𝑛6𝑡 = 1 if 𝑁 > 40. 𝑉𝐼𝑋𝑡 is the CBOE volatility index and 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the Bitcoin price. 

The intercept corresponds to the days when no severe vulnerabilities are released. 

Table 5 contains the model coefficients. Consistent with the findings on transaction 

costs, the CIR increases with the number of severe vulnerabilities. However, the coefficients 

𝛽4, 𝛽5 and 𝛽6 are statistically equal. As such, congestion can increase the mining reward only 

to a certain limit. I show the economic significance of this limit in Figure 4. On average, 

congestion does not drive the CIR above $2,800. This result should be interpreted with caution. 

                                                           
10Cryptocurrency blockchain miners receive compensation in two forms. First, blockchain rewards miners with a 

number of new coins minted when a block is mined. Second, blockchain users compete for execution priority by 

paying fees to miners. The number of new coins minted is typically diminishing over time. Therefore, transaction 

fees will become the primary source of mining reward in the long run. 
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First, the costs of alternative means of transaction processing may decrease over time, thereby 

lowering the expected CIR limit per block. Second, fully endogenous demand may be less 

constrained in the selection of transaction processing means than demand consisting of both 

endogenous and exogenous components. This may further decrease the expected CIR limit. 

[Table 5] 

[Figure 4] 

 

4.4 Cryptocurrency market 

Cryptocurrency exchanges do not typically process internal transactions through the 

blockchain. For instance, Gemini is registered as a fiduciary and keeps its own record of 

changes in coin ownership. The coins circulating within the exchange remain in the centralized 

exchange wallet until the traders decide to withdraw these coins. This practice allows coin 

traders to avoid blockchain congestion costs and trade with sub-microsecond latency. 

Centralized exchange wallets are, however, vulnerable to cybersecurity breaches. There have 

been multiple instances when centralized exchange wallets have been hacked and coins stolen. 

Although individual wallets are also subject to theft, they are much less attractive to hackers 

because the resources invested in stealing the wallets and decoding the individual passwords 

may exceed the value of coins. A cryptocurrency exchange, however, can not eliminate 

cybersecurity risk by splitting funds between numerous wallets because these wallets will 

remain under supervision of the same entity. Moreover, frequent transfers of cryptocurrency 

between the exchange wallets can cause even higher cybersecurity risks than keeping 

substantial funds in the centralized hot wallet (Jain, Felten and Goldfeder, 2018). 
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When an increase in hacking activity causes blockchain congestion, coin traders face a 

choice between two options. The first one is to transfer their coins to the centralized exchange 

wallet and enjoy congestion-free settlement despite the coin theft risk. The second option is to 

avoid such exchanges and continue trading with individual wallets despite the congestion costs. 

If more coin traders prefer the first option to the second one, then the demand for exchange 

settlement should increase with ransomware activity. 

The results in Table 6 reveal that the demand for exchange cryptocurrency trading 

increases with congestion despite the coin theft risk. Both the volume and number of 

transactions grow by 13% with a one standard deviation shock to the number of severe 

vulnerabilities. Moreover, it appears that market makers do not typically demand higher 

compensation for liquidity provision when more vulnerabilities are discovered. Shocks to 

severe vulnerabilities do not have a visible impact on the effective spread and implementation 

shortfall.  

[Table 6] 

 

5. Robustness 

5.1 Severe vs. weak vulnerabilities 

In this section, I test whether vulnerability severity matters. Weak vulnerabilities 

typically have low exploitability and should not cause significant shocks to the ransomware 

activity. The NVD classifies vulnerabilities with the score below 4.0 as low-severity 

vulnerabilities. I use these weak vulnerabilities to examine whether my results are indeed 
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driven by the ransomware activity rather than commonalities between the patterns of 

blockchain congestion and the NVD vulnerability releases. 

Naturally, cybersecurity experts spot weak and strong vulnerabilities at the same time. 

As a result, the discovery of severe and weak vulnerabilities is correlated (𝜌 = 0.46). Despite 

this correlation, the results in Table 7 indicate that weak vulnerabilities do not cause shocks to 

blockchain or cryptocurrency markets. Specifically, weak vulnerabilities do not have 

significant explanatory power on top of severe vulnerabilities. Thus, the results are consistent 

with the main finding that ransomware activity causes shocks to the demand for blockchain 

settlement. 

[Table 7] 

 

5.2 Ransomware-unrelated cybersecurity risks 

The results on blockchain congestion will still hold even if there exists an alternative 

explanation of how vulnerabilities may create shocks to demand for blockchain settlement. 

Econometrically, there is no difference whether vulnerabilities are causing the demand shocks 

through ransomware attacks or by other means (e.g., coin thefts). However, I still address this 

alternative because it may carry a different economic interpretation. Specifically, coin theft 

risk may incentivize users to sell their coin holdings, thus increasing the number of blockchain 

transactions.  

I find this explanation rather unlikely. First, there appears to be no relationship between 

the discovery of severe vulnerabilities and Bitcoin price volatility (the results are available on 

request). Second, the results in Table 6 indicate that the bid-ask spread and implementation 
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shortfall do not change with the number of newly discovered severe vulnerabilities. This 

suggests that vulnerabilities do not systematically tighten up constraints on the cryptocurrency 

market maker inventory.  

To further address this concern, I run the main analysis with the sample excluding the 

days around the discovery of Bitcoin-related vulnerabilities and major coin thefts. I obtain the 

release dates of Bitcoin-related vulnerabilities by screening vulnerability descriptions in the 

NVD database for the word “Bitcoin”. The coin theft dates come from 

magoo.github.io/Blockchain-Graveyard – a website tracing the major coin theft events. I 

remove three days around the dates of coin thefts and Bitcoin-related vulnerability releases 

from the sample. In total, 91 non-overlapping days are excluded from the sample. According 

to Table 8, the main results are not affected by the elimination of the days around coin thefts 

and the Bitcoin-related vulnerability releases. 

[Table 8] 

 

5.3 Alternative standardization window 

Next, I address a concern about potential seasonality and persistence in the sample 

variables. Hodrick and Prescott (1997) and Novy-Marx (2014) show that regressions on 

cyclical and persistent data may produce spurious results. I address this issue by standardizing 

all variables by month. The coefficients in Table 9 are consistent with the main sample 

specification. As such, seasonality and persistence do not appear to drive the results. 

[Table 9] 
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5.4 Placebo test 

Finally, I estimate the likelihood of false results. To do so, I generate multiple placebo 

samples of the randomly drawn severe vulnerabilities and use these samples in the main 

regression setup. Specifically, I use the following procedure: First, the series of severe 

vulnerabilities are randomly permuted. Then, the main regression runs with the placebo sample 

of vulnerabilities as an independent variable. Next, the value 1 is assigned if the placebo 

coefficient sign is consistent with the sign of the coefficient in the original regression and 0 

otherwise. Finally, the statistical significance of the placebo coefficient is captured. The above 

procedure runs 1,000 times. 

Table 10 reports the percentage of placebo coefficients consistent with the original 

ones. Among the 1,000 runs, there are no instances when all placebo coefficients are consistent 

with the original ones at the 10% significance level (Panel A). A separate estimation with 

100,000 runs shows only two such instances. As such, the joint probability that placebo 

coefficients are consistent with the results is rather low. The instances when coefficients are 

individually significant and consistent with the original ones are also rare (Panel B). 

[Table 10] 

 

6. Conclusion 

A crucial problem preventing blockchain technology from replacing conventional 

means of electronic payment is the inherent capacity limit. Conventional electronic payment 

networks can increase capacity and reduce the risk of congestion without compromising 

reliability. In contrast, blockchains may become unreliable in the absence of congestion. As a 
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result, congestion costs will remain a unique feature differentiating established blockchains 

from other means of electronic transaction settlement. 

I study how blockchain users respond to cybersecurity-related shocks to demand for 

blockchain settlement. Consistent with the theory predictions, some endogenous users forgo 

blockchain settlement when the exogenous demand arrives. The remaining users engage in 

competition for execution priority and raise the level of transaction fees. An increase in 

transaction fees also implies an increase in mining reward. Mining reward, however, does not 

increase with congestion infinitely. I document the existence of the upper bound on the 

congestion-induced reward for mining. Although the empirical investigation relies on a 

cryptocurrency blockchain data, my findings are relevant to any blockchain settlement system 

that requires congestion to support the reliable transaction confirmation. Finally, I find that 

demand for cryptocurrency exchange congestion-free settlement increases during blockchain 

congestion shocks despite the risk of theft from the centralized exchange wallet. 
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Table 1: Bitcoin blockchain and cryptocurrency exchange summary statistics 

The table reports descriptive statistics for the Bitcoin blockchain (Panel A) and Gemini cryptocurrency exchange 

(Panel B). The blockchain sample spans January 2014 to November 2017. The exchange sample spans January 

2016 to November 2017. Both samples are limited to business days due to little activity occurring on weekends 

and holidays. The variables are defined as follows: 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙 is the number of transactions involving all 

blockchain addresses; 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐 is the number of transactions involving the addresses other than one 

hundred most popular network addresses; 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟 is the number of transactions involving one hundred 

most popular addresses; 𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶 is the average daily fee attached to blockchain transactions; 𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒 

is the average time it takes to process a fee-paying transaction; 𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 is the average daily number of 

transactions per block; 𝐹𝑒𝑒𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝐵𝑇𝐶 is the average value of fees attached per block; 𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑇𝐶 and 

𝑛𝑇𝑟𝑎𝑑𝑒𝑠 is the daily volume and the number of trades on Gemini exchange; 𝐸𝑆𝑝𝑟𝑒𝑎𝑑 is the effective spread; 

𝐼𝑚𝑝𝑙𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 is the implementation shortfall defined as twice the signed difference between corresponding best 

quote when the market order arrived to the exchange and the realized execution price of the market order. 

 Mean Median Std 

Panel A: Blockchain Statistics 

𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙  179,281 187,202 89,692 

𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐  171,545 180,232 88,249 

𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟  7,736 6,150 7,614 

𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶 x 1000  0.370 0.215 0.357 

𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒, minutes  9.567 8.466 3.211 

𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘  1,174 1,147 617 

𝐹𝑒𝑒𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝐵𝑇𝐶  0.571 0.224 0.775 

#Days 987   

Panel B: Exchange Statistics 

𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑇𝐶  4,477 2,008 5,711 

𝑛𝑇𝑟𝑎𝑑𝑒𝑠  2,827 977 3,763 

𝐸𝑆𝑝𝑟𝑒𝑎𝑑, bp. 1.718 1.156 19.911 

𝐼𝑚𝑝𝑙𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙, bp. 0.433 0.286 0.484 

#Days 461   
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Table 2: Vulnerability summary statistics 

The table reports summary statistics for the sample of severe (severity score above 7.0) vulnerabilities distributed 

in the data feed of the National Vulnerability Database (NVD). The NVD assigns a severity score on a 1 to 10 

scale according to several exploitability factors. The vulnerability scoring system adopted by the NVD classifies 

vulnerabilities scored above 7.0 as highly severe. The sample spans January 2014 to November 2017. The sample 

is limited to business days due to the small number of vulnerabilities released on weekends and holidays. Panel 

A contains the daily mean, median and standard deviation of the newly released severe vulnerabilities. Panel B 

reports the breakdown of vulnerabilities by software vendor.  

Panel A: Descriptive Statistics 

 Mean Median Std 

𝑉𝑢𝑙𝑛  9.52 5 15.01 

#Days 987   

Panel B: Breakdown of Vulnerabilities by Software Vendor 

 #Vuln Vuln Share (%) Mean Score Median 

Score 

Microsoft 1,252 13.32% 8.70 9.3 

Google 928 9.88% 8.74 9.3 

Adobe 836 8.90% 9.64 10 

IBM 617 6.57% 8.09 7.5 

Apple 526 5.60% 8.85 9.3 

Oracle 423 4.50% 8.30 7.6 

Cisco 357 3.80% 8.09 7.8 

Linux 261 2.78% 8.00 7.6 

Huawei 132 1.41% 8.18 7.8 

HP 112 1.19% 8.37 7.6 

Other 3,953 42.07% 8.14 7.5 

#Vendors 1,229    
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Table 3: Ransomware attacks and demand for blockchain settlement 

The table examines sensitivity of blockchain transactions to the number of newly released severe vulnerabilities. 

In pursuit of anonymity, hackers typically do not use the same address to collect all ransom payments. As such, 

regular blockchain addresses are unlikely to be involved in ransom processing. Thus, transactions involving these 

addresses (𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟) reflect endogenous demand for blockchain settlement. The remaining transactions 

reflect both endogenous and exogenous demand (𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐). I use the following model to formally test the 

relationship between ransomware activity and the demand for blockchain settlement: 

𝐷𝑒𝑝𝑉𝑎𝑟𝑡 = 𝛽1𝑉𝑢𝑙𝑛𝑡 + 𝛽2𝑉𝐼𝑋𝑡 + 𝛽3𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 , 

where 𝐷𝑒𝑝𝑉𝑎𝑟𝑡 is one of the three variables: 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙 (Column 1) is the number of transactions involving all 

blockchain addresses; 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐 (Column 2) is the number of transactions involving the addresses other 

than one hundred most popular network addresses; 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟 (Column 3) is the number of transactions 

involving one hundred most popular addresses. 𝑉𝑢𝑙𝑛 is the number of newly discovered severe vulnerabilities. 

𝑉𝐼𝑋𝑡 is the level of the CBOE volatility index. 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of Bitcoin cryptocurrency. All regressions 

are estimated with standardized and demeaned variables. The standard errors (in parentheses) are adjusted for 

heteroskedasticity and autocorrelation. Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 

10% levels. 

 (1) (2) (3) 
𝑉𝑢𝑙𝑛  .096*** .103*** -.058** 

 (.024) (.025) (.023) 

𝑉𝐼𝑋  -.041 -.040 -.022** 

 (.060) (.061) (.024) 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶  .328*** .326*** .089*** 

 (.038) (.039) (.017) 

𝑅2  .279 .278 .022 
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Table 4: Ransomware attacks and blockchain congestion 

The table shows whether congestion costs are increasing with ransomware activity. I report coefficients of the 

following model: 

𝐷𝑒𝑝𝑉𝑎𝑟𝑡 = 𝛽1𝑉𝑢𝑙𝑛𝑡 + 𝛽2𝑉𝐼𝑋𝑡 + 𝛽3𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 , 

where 𝐷𝑒𝑝𝑉𝑎𝑟𝑡 is one of the three variables: 𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶 (Column 1) is the average daily fee attached to the 

blockchain transactions; 𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒 (Column 2) is the average time it takes to process a fee-paying transaction; 

𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 (Column 3) is the average daily number of transactions per block; 𝑉𝑢𝑙𝑛 is the number of newly 

discovered severe vulnerabilities. 𝑉𝐼𝑋𝑡 is the level of the CBOE volatility index. 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of Bitcoin 

cryptocurrency. All regressions are estimated with standardized and demeaned variables. The standard errors (in 

parentheses) are adjusted for heteroskedasticity and autocorrelation. Asterisks ***, ** and * denote statistical 

significance at the 1%, 5% and 10% levels. 

 (1) (2) (3) 
𝑉𝑢𝑙𝑛  .092*** .063** .095*** 

 (.033) (.027) (.024) 

𝑉𝐼𝑋  -.155*** -.155*** -.047 

 (.048) (.045) (.060) 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶  .392*** .264*** .318*** 

 (.079) (.052) (.040) 

𝑅2  .464 .216 .267 
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Table 5: The limit to congestion-induced reward 

This table estimates the limit to the fees per block that congested users agree to pay. The limit is reached when 

further increase in ransomware activity no longer increases the mining reward per block coming from transaction 

fees. I use the following model to find whether such a limit exists: 

𝐶𝐼𝑅𝑡 = 𝛼 + 𝛽1𝑉𝑢𝑙𝑛1𝑡 + 𝛽2𝑉𝑢𝑙𝑛2𝑡 + 𝛽3𝑉𝑢𝑙𝑛3𝑡 + 𝛽4𝑉𝑢𝑙𝑛4𝑡 + 𝛽5𝑉𝑢𝑙𝑛5𝑡 + 𝛽6𝑉𝑢𝑙𝑛6𝑡 + 𝑉𝐼𝑋𝑡 + 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 

where 𝐶𝐼𝑅𝑡 is the mean daily mining reward per block coming from transaction fees. 𝑉𝑢𝑙𝑛1𝑡 − 𝑉𝑢𝑙𝑛6𝑡 are 

dummy variables equal to 1 if the number of severe vulnerabilities lies within a certain interval. Specifically, 

𝑉𝑢𝑙𝑛1𝑡 = 1 if 0 < 𝑁 ≤ 3, 𝑉𝑢𝑙𝑛2𝑡 = 1 if 3 < 𝑁 ≤ 10, 𝑉𝑢𝑙𝑛3𝑡 = 1 if 10 < 𝑁 ≤ 20, 𝑉𝑢𝑙𝑛4𝑡 = 1 if 20 < 𝑁 ≤
30, 𝑉𝑢𝑙𝑛5𝑡 = 1 if 30 < 𝑁 ≤ 40, 𝑉𝑢𝑙𝑛6𝑡 = 1 if 𝑁 > 40. 𝑉𝐼𝑋𝑡 is the level of the CBOE volatility index. 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of Bitcoin cryptocurrency. The intercept corresponds to days when no severe 

vulnerabilities are released. All non-dummy variables are standardized. The standard errors (in parentheses) are 

adjusted for heteroskedasticity and autocorrelation. Asterisks ***, ** and * denote statistical significance at the 

1%, 5% and 10% levels. 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  -.145*** 

 (.048) 

𝑉𝑢𝑙𝑛1  .043 

 (.051) 

𝑉𝑢𝑙𝑛2  .160** 

 (.070) 

𝑉𝑢𝑙𝑛3  .220** 

 (.097) 

𝑉𝑢𝑙𝑛4  .431*** 

 (.168) 

𝑉𝑢𝑙𝑛5  .409** 

 (.169) 

𝑉𝑢𝑙𝑛6  .388*** 

 (.140) 

𝑉𝐼𝑋  -.138*** 

 (.046) 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶  .592*** 

 (.475) 
  

𝐻: 𝑉𝑢𝑙𝑛1 = 𝑉𝑢𝑙𝑛2 = 𝑉𝑢𝑙𝑛3 = 𝑉𝑢𝑙𝑛4  Rejected*** 

𝐹-value 3.97 

𝐻: 𝑉𝑢𝑙𝑛4 = 𝑉𝑢𝑙𝑛5 = 𝑉𝑢𝑙𝑛6  Not Rejected 

𝐹-value .030 

𝑅2  .482 
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Table 6: Blockchain congestion and cryptocurrency exchange liquidity 

The table shows how blockchain congestion affects cryptocurrency exchange trading. Specifically, I estimate the 

following model: 

𝐷𝑒𝑝𝑉𝑎𝑟𝑡 = 𝛽1𝑉𝑢𝑙𝑛𝑡 + 𝛽2𝑉𝐼𝑋𝑡 + 𝛽3𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 , 

Where 𝐷𝑒𝑝𝑉𝑎𝑟𝑡 is one of the four variables: 𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑇𝐶 (Column 1) and 𝑛𝑇𝑟𝑎𝑑𝑒𝑠 (Column 2) is the daily 

volume and the number of trades on the Gemini exchange; 𝐸𝑆𝑝𝑟𝑒𝑎𝑑 (Column 3) is the effective spread; 

𝐼𝑚𝑝𝑙𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 (Column 4) is the implementation shortfall defined as twice the signed difference between the 

corresponding best quote when the market order arrived to the exchange and the realized execution price of the 

market order. 𝑉𝑢𝑙𝑛 is the number of newly discovered severe vulnerabilities. 𝑉𝐼𝑋𝑡 is the level of the CBOE 

volatility index. 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of Bitcoin cryptocurrency. All regressions are estimated with standardized 

and demeaned variables. The standard errors (in parentheses) are adjusted for heteroskedasticity and 

autocorrelation. Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

 (1) (2) (3) (4) 

𝑉𝑢𝑙𝑛  .103** .098*** .027 .016 

 (.041) (.032) (.056) (.038) 

𝑉𝐼𝑋  -.130** -.092** .048 .259** 

 (.054) (.040) (.056) (.112) 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶  .369*** .510*** -.082 .007 

 (.071) (.066) (.077) (.044) 

𝑅2  .369 .607 .020 .069 
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Table 7: Severe vs. weak vulnerabilities 

The table examines the sensitivity of the main results to the discovery of weak vulnerabilities. Weak vulnerabilities typically have low exploitability 

and should not cause significant shocks to the ransomware activity. The NVD classifies vulnerabilities with the score below 4.0 as the low-severity 

vulnerabilities. I use these weak vulnerabilities to examine whether my results are indeed driven by the ransomware activity rather than by the 

commonalities between the patterns of blockchain congestion and the NVD vulnerability releases. I use the following model to test whether the main 

results are sensitive to the discovery of weak vulnerabilities: 

𝐷𝑒𝑝𝑉𝑎𝑟𝑡 = 𝛽1𝑉𝑢𝑙𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝑡 + 𝛽2𝑉𝑢𝑙𝑛𝑊𝑒𝑎𝑘𝑡 + 𝛽3𝑉𝐼𝑋𝑡 + 𝛽4𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 , 

where 𝐷𝑒𝑝𝑉𝑎𝑟𝑡 is one of eight variables: 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙 (Column 1); 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐 (Column 2); 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟 (Column 3); 𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶 

(Column 4); 𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒 (Column 5); 𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 (Column 6); 𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑇𝐶 (Column 7); 𝐸𝑆𝑝𝑟𝑒𝑎𝑑 (Column 8). 𝑉𝑢𝑙𝑛𝑆𝑒𝑣𝑒𝑟𝑒 is the number 

of newly discovered vulnerabilities with the severity score above 7.0. 𝑉𝑢𝑙𝑛𝑊𝑒𝑎𝑘 is the number of newly discovered vulnerabilities with the severity 

score below 4.0. 𝑉𝐼𝑋𝑡 is the level of the CBOE volatility index and 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of Bitcoin cryptocurrency. All regressions are estimated 

with standardized and demeaned variables. The standard errors (in parentheses) are adjusted for heteroskedasticity and autocorrelation. Asterisks 

***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝑉𝑢𝑙𝑛𝑆𝑒𝑣𝑒𝑟𝑒  .098*** .105*** -.064*** .085** .047 .100*** .116** .109*** 

 (.028) (.028) (.028) (.032) (.029) (.027) (.052) (.039) 

𝑉𝑢𝑙𝑛𝑊𝑒𝑎𝑘  -.005 -.006 .013 .017 .036 -.011 -.029 -.032 

 (.031) (.032) (.57) (.48) (.028) (.288) (.060) (.044) 

𝑉𝐼𝑋  -.041 -.040 -.021 -.154*** -.154*** -.048 -.117** -.080* 

 (.060) (.061) (.033) (.048) (.047) (.060) (.053) (.059) 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶  .328*** .326*** .088*** .391*** .244*** .319*** .379*** .518*** 

 (.038) (.039) (.017) (.079) (.052) (.040) (.074) (.069) 

𝑅2  .279 .277 .022 .464 .217 .267 .374 .608 
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Table 8: Robustness to non-ransomware cybersecurity risks 

The table examines sensitivity of the main results to ransomware-unrelated cybersecurity risks. Coin theft risk may incentivize users to sell their 

coin holdings, thus increasing the number of blockchain transactions. To address this concern, I run the main analysis with the sample excluding the 

three days around the discovery of Bitcoin-related vulnerabilities and major coin thefts. I use the following model to test whether the main results 

are sensitive to the ransomware-unrelated cybersecurity risks: 

𝐷𝑒𝑝𝑉𝑎𝑟𝑡 = 𝛽1𝑉𝑢𝑙𝑛𝑡 + 𝛽2𝑉𝐼𝑋𝑡 + 𝛽3𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 , 

where 𝐷𝑒𝑝𝑉𝑎𝑟𝑡 is one of eight variables: 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙 (Column 1); 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐 (Column 2); 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟 (Column 3); 𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶 

(Column 4); 𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒 (Column 5); 𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 (Column 6); 𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑇𝐶 (Column 7); 𝐸𝑆𝑝𝑟𝑒𝑎𝑑 (Column 8). 𝑉𝑢𝑙𝑛𝑆𝑒𝑣𝑒𝑟𝑒 is the number 

of newly discovered severe vulnerabilities. 𝑉𝐼𝑋𝑡 is the level of the CBOE volatility index and 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of Bitcoin cryptocurrency. All 

regressions are estimated with standardized and demeaned variables. The standard errors (in parentheses) are adjusted for heteroskedasticity and 

autocorrelation. Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝑉𝑢𝑙𝑛  .092*** .099*** -.062** .096*** .069** .084*** .104** .096*** 

 (.027) (.027) (.027) (.034) (.030) (.026) (.044) (.034) 

𝑉𝐼𝑋  -.024 -.023 -.021 -.145*** -.153*** -.034 -.116** -.079** 

 (.062) (.063) (.035) (.047) (.049) (.062) (.052) (.039) 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶  .322*** .320*** .096*** .386*** .236*** .313*** .378*** .517*** 

 (.037) (.038) (.018) (.080) (.052) (.040) (.073) (.069) 

𝑅2  .275 .272 .026 .463 .210 .262 .373 .608 
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Table 9: Robustness to alternative standardization window 

The table addresses a concern about potential seasonality and persistence in the sample variables. The literature shows that the regressions on cyclical 

and persistent data may produce spurious results. I address this issue by running the main regression with all variables standardized by month:  

𝐷𝑒𝑝𝑉𝑎𝑟𝑡 = 𝛽1𝑉𝑢𝑙𝑛𝑡 + 𝛽2𝑉𝐼𝑋𝑡 + 𝛽3𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 + 𝜀𝑡 , 

where 𝐷𝑒𝑝𝑉𝑎𝑟𝑡 is one of eight variables: 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙 (Column 1); 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐 (Column 2); 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟 (Column 3); 𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶 

(Column 4); 𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒 (Column 5); 𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 (Column 6); 𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑇𝐶 (Column 7); 𝐸𝑆𝑝𝑟𝑒𝑎𝑑 (Column 8). 𝑉𝑢𝑙𝑛𝑆𝑒𝑣𝑒𝑟𝑒 is the number 

of newly discovered severe vulnerabilities. 𝑉𝐼𝑋𝑡 is the level of the CBOE volatility index and 𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶𝑡 is the price of Bitcoin cryptocurrency. 

The standard errors (in parentheses) are adjusted for heteroskedasticity and autocorrelation. Asterisks ***, ** and * denote statistical significance at 

the 1%, 5% and 10% levels. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝑉𝑢𝑙𝑛  .097*** .102*** -.074*** .085*** .055** .092*** .080*** .126*** 

 (.024) (.024) (.024) (.026) (.026) (.024) (.029) (.034) 

𝑉𝐼𝑋  -.062 -.060 .059 -.278*** -.195*** -.069 -.211*** -.274*** 

 (.064) (.064) (.045) (.050) (.049) (.065) (.068) (.059) 

𝑃𝑟𝑖𝑐𝑒𝐵𝑇𝐶  .343*** .347*** .077*** .380*** .263*** .327*** .371*** .421*** 

 (.046) (.046) (.023) (.067) (.057) (.047) (.053) (.048) 

𝑅2  .284 .291 .013 .514 .247 .264 .350 .502 
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Table 10: Placebo test 

The table estimates the likelihood of false results. I generate multiple placebo samples of the randomly drawn severe vulnerabilities and use these 

samples in the main regression setup. The specific procedure is as follows: First, the series of severe vulnerabilities are randomly permuted. Then, 

the main regression runs with the placebo sample of vulnerabilities as an independent variable. Next, the value 1 is assigned if the placebo coefficient 

sign is consistent with the sign of the coefficient in the original regression and 0 otherwise. Finally, the statistical significance of the placebo 

coefficient is captured. The above procedure runs 1,000 times. Panel A reports the percentage of instances when all placebo coefficients are consistent 

with the original ones. Panel B reports the percentage of instances when placebo coefficients are individually consistent with the original ones. The 

results in Panel B are split between columns as follows: 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑙𝑙 – Column 1; 𝑛𝑇𝑟𝑎𝑛𝑠𝐴𝑑𝐻𝑜𝑐 – Column 2; 𝑛𝑇𝑟𝑎𝑛𝑠𝑅𝑒𝑔𝑢𝑙𝑎𝑟 – Column 3; 

𝑇𝑟𝑎𝑛𝑠𝐹𝑒𝑒𝐵𝑇𝐶 – Column 4; 𝐶𝑜𝑛𝑓𝑇𝑖𝑚𝑒 – Column 5; 𝑛𝑇𝑟𝑎𝑛𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 – Column 6; 𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑇𝐶 – Column 7; 𝐸𝑆𝑝𝑟𝑒𝑎𝑑 – Column 8. 

Panel A: Joint Probability of Consistent Significant results, % 

10% 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙  .000        

5% 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙  .000        

1% 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙  .000        

Panel B: Marginal Probability of Consistent Significant Results, % 

 (1) (2) (3) (4) (5) (6) (7) (8) 

10% 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙  .059 .060 .096 .034 .035 .056 .021 .031 

5% 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙  .031 .033 .052 .015 .015 .033 .005 .012 

1% 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙  .006 .006 .017 .003 .000 .008 .001 .003 
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Figure 1: The WannaCry decryptor message 
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Figure 2: Severe vulnerabilities and ransomware releases 
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Figure 3: The daily number of severe vulnerabilities discovered during the sample period 
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Figure 4: The distribution of the average value of fees attached per block 
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Appendix 

NVD data feeds report severity score of 1 to 10 for every vulnerability. This score is a 

function of the following exploitability factors: 

𝑆𝑐𝑜𝑟𝑒 = 𝑓(𝐴𝑐𝑐𝐶𝑜𝑚𝑝, 𝐴𝑢𝑡ℎ, 𝐴𝑐𝑐𝑉𝑒𝑐𝑡, 𝐶𝑜𝑛𝑓𝐼𝑚𝑝, 𝐼𝑛𝑡𝑒𝑔𝐼𝑚𝑝, 𝐴𝑣𝑎𝑖𝑙𝐼𝑚𝑝), 

where the inputs to the scoring function are: 

- 𝐴𝑐𝑐𝐶𝑜𝑚𝑝 is the vulnerability access complexity. High access complexity implies that 

a hacker needs to undertake many steps to exploit such vulnerability. Higher 

complexity lowers the overall score. 

- 𝐴𝑢𝑡ℎ is the number of times a hacker must pass authentication to a target to exploit a 

vulnerability. The higher this number, the lower the overall score. 

- 𝐴𝑐𝑐𝑉𝑒𝑐𝑡 is the means of access to the target. Some vulnerabilities require a hacker to 

have physical access to a target computer, while the others can be exploited remotely. 

Remotely exploitable vulnerabilities receive a higher score ceteris paribus. 

- 𝐶𝑜𝑛𝑓𝐼𝑚𝑝 is the extent to which confidentiality of a target system is compromised. An 

increase in this metric increases the overall score.  

-  𝐼𝑛𝑡𝑒𝑔𝐼𝑚𝑝 is the extent to which the integrity of a system is compromised. This metric 

captures whether a hacker can modify information on a target computer by exploiting 

the vulnerability. An increase in this metric increases the overall score. 

- 𝐴𝑣𝑎𝑖𝑙𝐼𝑚𝑝 is the impact the attack may have on the availability of the target system.  

Specifically, it reflects the potential of a hacker attack to disrupt the target system. A 

higher availability impact increases the overall score.  
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Table A.1 reports examples of vulnerabilities with different scores. Vulnerabilities with 

a high severity score typically allow a hacker to take control of the target system and install 

malicious programs such as ransomware. For instance, the vulnerability CVE-2017-8543 has 

a severity score of 10.0, and can be exploited to deploy a ransomware similar to WannaCry11. 

Vulnerabilities scored around 5.0 do not usually allow ransomware attacks. However, a chain 

of such vulnerabilities may occasionally compromise the system. For example, while CVE-

2017-3764 reveals only usernames, another vulnerability may reveal passwords. That being 

said, the probability of this is rather low. Finally, vulnerabilities with a low severity score have 

little exploitability. For example, a hacker must rely on help from a network insider to exploit 

CVE-2017-3318. 

 

 

 

  

                                                           
11 https://security.berkeley.edu/news/windows-search-remote-code-execution-vulnerability-cve-2017-8543 

https://security.berkeley.edu/news/windows-search-remote-code-execution-vulnerability-cve-2017-8543
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Table A.1: Typical vulnerabilities and severity scores 

ID Description Score 

CVE-

2017-

8543 

Microsoft Windows XP SP3, Windows XP x64 XP2, Windows Server 2003 SP2, 

Windows Vista, Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows 

8, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 

Gold, 1511, 1607 and 1703, and Windows Server 2016 allow an attacker to take 

control of the affected system when Windows Search fails to handle objects in 

memory, aka "Windows Search Remote Code Execution Vulnerability". 

 

10.0 

CVE-

2017-

3764 

A vulnerability was identified in Lenovo XClarity Administrator (LXCA) before 

1.4.0 where LXCA user account names may be exposed to unauthenticated users with 

access to the LXCA web user interface. No password information of the user 

accounts is exposed. 

 

5.0 

CVE-

2017-

3318 

This difficult to exploit vulnerability allows a high privileged attacker with a logon 

to the infrastructure where MySQL Server executes to compromise MySQL Server. 

Successful attacks require human interaction from a person other than the attacker. 

Successful attacks of this vulnerability can result in unauthorized access to critical 

data or complete access to all MySQL Server accessible data. 

1.0 

 


