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Abstract

We propose a quantitative framework for assessing the financial impact of any form of impact
investing, including socially responsible investing (SRI), environmental, social, and gover-
nance (ESG) objectives, and other non-financial investment criteria. We derive conditions
under which impact investing detracts from, improves on, or is neutral to the performance
of traditional mean-variance optimal portfolios, which depends on whether the correlations
between the impact factor and unobserved excess returns are negative, positive, or zero, re-
spectively. Using Treynor-Black portfolios to maximize the risk-adjusted returns of impact
portfolios, we propose a quantitative measure for the financial reward, or cost, of impact
investing compared to passive index benchmarks. We illustrate our approach with applica-
tions to biotech venture philanthropy, divesting from “sin” stocks, investing in ESG, and
“meme” stock rallies such as GameStop in 2021.
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1 Introduction

Impact investing—broadly defined as investments that consider not only financial objectives

but also other goals that support certain social priorities and agendas—has drawn an in-

creasing amount of attention in recent years. This concept was first introduced through

populist efforts to effect social change by encouraging institutional investors to divest from

companies engaged in businesses viewed by critics as unethical, immoral, or otherwise objec-

tionable, e.g., exploitation of child labor; tacit support of apartheid or religious persecution;

or gambling, pornography, alcohol, tobacco, and firearms businesses (collectively known as

“sin stocks”). Such “socially responsible” investing (SRI) initially involved imposing filters

so that certain companies were excluded from investable universes, but its scope has ex-

panded significantly to include environmental, social, and governance (ESG) criteria, and

has been given different names such as “sustainable” and “green” investing. As of December

2021, 4,578 organizations representing over $100 trillion in assets under management have

become signatories to the United Nations Principles of Responsible Investment (UNPRI).

Conventional wisdom typically views impact investing as a standard portfolio selection

problem with additional constraints related to the degree of social impact of the underly-

ing securities, thereby implying a non-superior risk/reward profile compared to the uncon-

strained case. Given that the constrained portfolio contains a proper subset of securities of

the unconstrained version, mathematical logic suggests that the constrained optimum is, at

best, equal to the unconstrained optimum or, more likely, inferior.

However, the non-superiority of constrained optima relies on a key assumption that is

almost never explicitly stated: the constraint is assumed to be statistically independent of the

securities’ returns. In some cases, such an assumption is warranted—imagine constructing

a subset of securities with CUSIP identifiers that contain prime numbers. Clearly such a

constraint has no relation to the returns of any security, hence imposing such a constraint

can only reduce the risk-adjusted return of the optimized portfolio.

But what if the constraint is not independent of the returns? For example, consider the

constraint “invest only in those companies for which their stock prices will appreciate by

more than 10% over the next 12 months.” Apart from the infeasibility of imposing such a

condition, it should be obvious that this constraint would, in fact, increase the risk-adjusted

return of the optimized portfolio. Therefore, the answer to the question of what is the impact

of impact investing rests entirely on whether and how the impact criteria are related to the

performance characteristics of the securities being considered.

In this paper, we develop a general framework to quantify the financial impact of impact

investing. We formalize impact investing as the sorting and selection of an investment

1



universe of N securities based on an impact factor , Xi, for security i, so that higher values

of Xi correspond to greater impact, e.g., lower carbon emissions, greater sustainability,

higher ESG score, etc. As a result, other things equal, impact investors are assumed to

prefer securities with higher values of Xi. This impact factor defines a rank ordering for all

securities in the universe from which an impact portfolio can be constructed, i.e., the top

decile of ESG-ranked securities or the bottom decile of carbon-emissions-ranked securities.

Therefore, the impact on investment performance is determined by the joint distribution of

the vector X ≡ [X1 X2 · · · XN ]T of impact measures with the investment performance of

individual securities.

To formalize this idea, we first propose a general linear multi-factor model for asset

returns and define excess returns or “alpha” as non-zero intercepts that we model as mean-

zero random variables. This framework allows for the possibility of superior investment

performance for individual securities, but also includes the conventional case of equilibrium

or no-arbitrage pricing if we set the variance of the alphas to zero. In fact, the implications

from our model are broadly applicable to the equilibrium asset-pricing set-up with no alpha

but there exist omitted factors of which investors are unaware. Such an agnostic approach

to investment performance allows us to determine conditions under which impact investing

does and does not change the risk/reward profile of a given investment product or strategy.

In particular, we derive—both in finite samples and asymptotically (as the number of

securities increases without bound)—the distribution of individual alphas that have been

ranked according to their impact factors X. It is well known that ranked random variables—

known as order statistics—have different distributions than their unranked versions, and a

large body of literature has developed many results for the distributions of various types

of order statistics. However, for our purposes, a more relevant strand of that literature

focuses on induced order statistics, in which random variables are ranked not by their own

values but by the values of other random variables, e.g., ranking the returns of a collection

of mutual funds not by their returns but by the funds’ market betas. We use properties of

induced order statistics to derive the distribution of an impact portfolio’s alphas ranked by

an arbitrary impact score X, allowing us to quantify the impact of impact investing.

Using this framework, we show that the expected alpha from the induced ordering is

determined by three terms: the correlation between X and the individual securities’ alphas,

the standard deviation of individual securities’ alphas, and a cross-sectionally standardized

impact score that captures whether the impact factor of a security is above or below av-

erage. In addition, we provide an alternative characterization of the expected alpha from

the induced ordering as a discounted version of the expected alpha from ordering securities

based on alpha (i.e., via an all-knowing oracle which, in reality, is of course unattainable be-
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cause alphas are unobservable). Much like the Sharpe-Lintner Capital Asset-Pricing Model

(CAPM) (Sharpe, 1964; Lintner, 1965) which quantifies the expected return of individual

securities through market beta,1 this simple but profound result highlights the mechanism

through which an impact factor’s excess return is influenced by the induced ordering of

alpha—it achieves a fraction of the maximum possible alpha with perfect knowledge, where

the fraction is simply the correlation between X and the individual securities’ alphas.

Using this insight, we quantify the alphas of portfolios formed based on the impact factor,

X—including common heuristics of creating portfolios from the top or bottom impact-factor

quantiles—and then apply the Treynor and Black (1973) framework to derive the optimal

weights when forming these portfolios to maximize Sharpe ratio. We show that such impact

portfolios are associated with “super-efficient frontiers” as long as the impact factor, X, is

positively correlated with the unobserved alphas of the individual securities. We also provide

an equilibrium/no-arbitrage interpretation of our results in which excess returns arise from

omitted factors that investors may not be aware of, but to which impact portfolio managers

have access. In this case, the excess returns are simply “excess” with respect to factors that

investors observe, and represent risk premia from specific impact factors.

The Treynor-Black portfolio allows us to construct a natural measure of the financial

impact of impact investing: an impact factor has positive alpha when it is positively cor-

related with individual securities’ unobserved alphas. On the other hand, an impact factor

can impose a cost—also quantifiable in our framework—when it is negatively correlated with

alphas and investors divest of the bottom-ranked securities (which have positive alphas on

average due to the negative correlation with X). This provides a possible explanation for

the inconsistent and sometimes contradictory empirical findings on the effects of adopting

impacting investing. The correlation between the impact factor and alpha is affected by

different measures of impact,2 different market conditions,3 and different asset-pricing mod-

els for alpha,4 all of which can influence the final estimate of the benefit or cost of impact

investing.

To illustrate the practical relevance of our results, we apply our framework to four specific

impact-investing contexts. The specific correlation—positive or negative—for each form of

impact investing depends on the specific nature of the impact, the risks involved to achieve

that impact, and its relationship with the underlying process of alpha generation.

1For standardized returns with unit variances, the market beta is simply the correlation between security
returns and market returns.

2There is a substantial literature documenting the divergence of ESG ratings for the same firms (Dort-
fleitner, Halbritter, and Nguyen, 2015; Semenova and Hassel, 2015; Berg, Koelbel, and Rigobon, 2020).

3See, for example, the “luxury-good effect” of Bansal, Wu, and Yaron (2021).
4See, for example, Geczy, Stambaugh, and Levin (2021) and Madhavan, Sobczyk, and Ang (2021).
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The first example is biotech venture philanthropy, a particular form of impact investing

in biomedicine where nonprofit and mission-driven organizations fund initiatives to advance

their objectives and potentially achieve returns that can be reinvested toward their mis-

sion. We take the case study by Kim and Lo (2019) about the Cystic Fibrosis Foundation,

a leading venture philanthropy organization dedicated to treating and, eventually, curing

cystic fibrosis. This example shows that a significantly positive alpha can be achieved by

advancing drug development for rare diseases, which illustrates the feasibility of “doing well

by doing good” (Falck and Heblich, 2007; Eichholtz, Kok, and Quigley, 2010). In this case,

the challenges associated with early-stage drug development programs from the financial

perspective—low probabilities of success, long time horizons, and large capital requirements

as highlighted by (Fagnan et al., 2013)—are more than offset by a positive correlation, ρ.

The second application involves measuring the cost of divesting from sin stocks, stocks

of companies engaged in businesses considered by some to be socially undesirable but that

are documented to have positive alphas, which can be explained by Merton’s (1987) model

of neglected stocks and segmented markets. Calibrating to Hong and Kacperczyk (2009)

as an example, we estimate the cost of divestment to be 1.7%–3.3% in forgone alpha per

annum, depending on the specific selection criteria. However, when calibrating to Blitz

and Fabozzi (2017) where the authors estimate alpha by controlling for two new Fama and

French (2015) quality factors—profitability and investment—in addition to classic factors,

we obtain a smaller but still non-trivial cost to institutional investors, 0.6%–1.3% per annum.

This example illustrates the dependence of the magnitude of estimated alpha on the specific

asset-pricing model used, a well-known issue with all performance attribution exercises.

Third, we apply our framework to several ESG empirical studies. Correlations between

the specific ESG measures in these studies and the unobserved alphas of individual securities

determine the final estimate of the benefit (or cost) of ESG investing. They range from

−0.05% for bonds (Baker et al., 2021) to 2.65% for equities in certain market conditions

(Bansal, Wu, and Yaron, 2021). This underscores the importance of asset class, impact

measures, and specific market conditions in determining the alpha of impact investing, as

well as the need to rationalize the highly dynamic impact of ESG on asset prices beyond

recently developed equilibrium models of ESG investing.

Finally, we apply our framework to explain the January 2021 price spike in GameStop

Corp. and other “meme” stocks such as AMC Entertainment Holdings and Blackberry, where

a decentralized short squeeze that exploited the short positions of institutional investors

caused their prices to increase sharply before crashing. Classifying such phenomena as

impact investing may seem strange, but based on the narrative that emerged from the

WallStreetBets social media group, there is little doubt that a significant source of trading
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volume was motivated by a desire to punish institutional shortsellers as well as to provide

moral support for the companies under attack. Perhaps a separate category called “price-

impact investing” would be more appropriate. Based on the GameStop experience and

similar episodes with other meme stocks, it is clear that the very act of trading can produce

positive alpha, at least in the short term. By applying an optimal order-execution model

with a simple market-impact function (Bertsimas and Lo, 1998), we are able to quantify the

financial impact of price-impact investing. Of course, manipulating the prices of publicly

traded equities clearly violates both securities law and anti-trust regulation, and our analysis

is not meant to condone or encourage such activities. However, measuring the magnitude of

such investments and understanding its financial implications can better inform regulators

and policymakers as to the scope and severity of this phenomena so they can devote the

appropriate sources to addressing it.

2 Literature Review

There is a growing literature theorizing the impact of SRI, ESG, and other non-financial

objectives on asset pricing. Heinkel, Kraus, and Zechner (2001) build an equilibrium model

in which exclusionary ethical investing leads to lower stock prices for polluting firms. Fama

and French’s (2007) taste model shows that, if investors prefer to invest in socially responsible

companies, the expected return on such companies will be lower. Pástor, Stambaugh, and

Taylor (2021b) provide a model for ESG investing where investors’ taste for green assets

imply lower returns, and assets can be priced in a two-factor model that includes the ESG

factor and the market portfolio. Moreover, they show that the ESG factor exists when there

is a large dispersion in investors’ ESG tastes.5

However, other attempts to incorporate ESG explicitly into an asset-pricing framework

imply that impact investing may positively predict expected returns in certain situations.

Pedersen, Fitzgibbons, and Pomorski (2021) show that when the market is populated by

ESG-motivated, ESG-aware, and ESG-unaware investors, the optimal allocation satisfies

four-fund separation and is characterized by an ESG-efficient frontier. In their framework,

ESG may either yield benefits to expected returns because it provides information about

firm fundamentals (as in our example above in which constraints contain information about

returns), or incur costs because it affects investor preferences and constraints. Chen and

Mussalli (2020) and Sorensen, Chen, and Mussalli (2021) outline a quantitative approach

5Other theoretical work on sustainable investing includes Friedman and Heinle (2016), Luo and Balvers
(2017), Albuquerque, Koskinen, and Zhang (2019), Zerbib (2020), and Goldstein et al. (2021). Adler and
Kritzman (2008) use a simulation framework to assess the cost of socially responsible investing.
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to expand traditional portfolio theory to incorporate sustainability considerations for prac-

titioners.

While these studies share some of the same implications as our framework, we add to this

literature in several novel ways. The equilibrium frameworks of Fama and French (2007),

Pástor, Stambaugh, and Taylor (2021b), and Pedersen, Fitzgibbons, and Pomorski (2021)

highlight that the expected return of ESG investing depends on the mix of investors and

preferences in the market.6 But impact investing is still an evolving concept and their

expected returns are dynamic and context-dependent. It is possible that market prices are

still adjusting to reach a new equilibrium that reflects these considerations (Cornell and

Damodaran, 2020).7 Our unified econometric framework provides an explicit method to

quantify the excess returns of any form of impact investment—including, but not limited to,

the equilibrium setting—during different stages of this adaptive process. These results are,

in turn, consistent with the equilibrium-based models when the correlation between X and

security returns reflects the particular market condition and shift in preferences over time.

From the adaptive markets (Lo, 2004, 2017) perspective, this correlation could reinforce itself

as the amount of assets under management for a given impact factor increases over time,

and eventually stabilizes as the size of the new sector reaches a steady state.

Our framework also differs from existing models in that we allow for the possibility of

non-zero alphas, or omitted factors in the equilibrium/no-arbitrage interpretation, which is

particularly relevant for the highly adaptive and dynamic ESG investment industry. An im-

portant insight from Pedersen, Fitzgibbons, and Pomorski (2021) is that ESG’s information

about firm fundamentals can yield benefits to its returns, while screening constraints will

incur costs to ESG investing.8 Our model shows that, when securities have non-zero alphas

that are otherwise inaccessible to investor, ESG investing can derive financial benefit from

constraints too, because of the information about returns implicit in these constraints. This

effect is formalized statistically by the correlation between the impact factor, X, and returns.

As a result, in addition to the ESG-efficient frontier of Pedersen, Fitzgibbons, and Pomorski

6Pedersen, Fitzgibbons, and Pomorski (2021) show that high-ESG stocks deliver high expected returns
when the market has many ESG-unaware investors, and low expected returns when the market has many
ESG-motivated investors. Pástor, Stambaugh, and Taylor (2021b) show that dispersion in ESG preferences
increases the size of ESG investments and lowers equilibrium ESG returns, and the authors also point out
that disentangling alphas from ESG taste shifts is a major challenge for empirical work in this area.

7For example, Bebchuk, Cohen, and Wang (2013) document the disappearance of a return premium
associated with highly rated corporate governance during an earlier period, and Bansal, Wu, and Yaron
(2021) find a “luxury-good effect,” both of which suggest that the measured performance of stocks as a
function of their ESG ratings will depend on the sample period.

8In their framework, the standard mean-variance tangency portfolio has the highest Sharpe ratio among
all portfolios, and restricting portfolios to have any ESG score other than that of the tangency portfolio
must yield a lower Sharpe ratio (Pedersen, Fitzgibbons, and Pomorski, 2021, p. 573).
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(2021), we are able to explicitly construct the optimal super-efficient portfolio from any X

and explicitly quantify its financial impact.

Theories of SRI and ESG investing are also accompanied by a vast empirical literature

focused on measuring their returns across asset classes and regions, and how much of these

returns can be explained by traditional asset pricing factors.9 On the one hand, several

studies suggest that investments with ESG considerations may sacrifice returns in markets

including stocks (Alessandrini and Jondeau, 2020), bonds (Baker et al., 2021), and venture

capital funds (Barber, Morse, and Yasuda, 2021). This is also consistent with the literature

that documents positive excess returns for sin stocks.10 Geczy, Stambaugh, and Levin (2021)

show that the SRI cost to mutual funds is minimal compared to a CAPM-investor but may

be substantial when investors allow for size, value, and momentum factors.

On the other hand, recent empirical evidence from both academic research (Kempf and

Osthoff, 2007; Bansal, Wu, and Yaron, 2021; Madhavan, Sobczyk, and Ang, 2021) and indus-

try advocates (Shing, 2021; Xiong, 2021) suggests that impact investing and, in particular,

ESG measures, is associated with higher expected returns, at least under certain market

conditions. For example, Pástor, Stambaugh, and Taylor (2021a) show that the high returns

for green assets in recent years reflect unexpectedly strong increases in environmental con-

cerns. In a recent review of about 2,200 individual studies, Friede, Busch, and Bassen (2015)

report that a large majority of them show a positive relationship between ESG criteria and

corporate financial performance. This raises the possibility that impact investing need not

always imply lower risk-adjusted returns.

Moreover, there is substantial divergence among impact measures—such as those for

ESG—even when they purport to capture the same concepts (Dortfleitner, Halbritter, and

Nguyen, 2015; Semenova and Hassel, 2015; Berg, Koelbel, and Rigobon, 2020; Gibson,

Krueger, and Schmidt, 2021). In particular, Khan, Serafeim, and Yoon (2016) find that

only firms with good ratings on material sustainability issues significantly outperform firms

with poor ratings on these issues.

These inconsistencies in the impact investing literature raise the question of what the

real financial impact of impact investing is, which is precisely the motivation for our current

contribution. Our framework explains not only how to measure the financial impact of

impact investing, but also explains why there is such a wide range of empirical estimates

for the expected returns of SRI and ESG investing. It stems from the wide range of impact

9See, for example, Galema, Plantinga, and Scholtens (2008), Renneboog, Ter Horst, and Zhang (2008),
Blitz and Fabozzi (2017), and Madhavan, Sobczyk, and Ang (2021).

10See, for example, Fabozzi, Ma, and Oliphant (2008), Hong and Kacperczyk (2009), Statman and
Glushkov (2009), and Fauver and McDonald IV (2014).
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definitions, date ranges, asset classes, and asset-pricing models for alpha, each of which

leads to a different specification that may have potentially different correlation between the

impact factor and asset returns. Our framework provides a unified methodology to quantify

the financial consequences of all forms of impact investing, including SRI and ESG.

Additional literature on SRI and ESG investing includes climate change and its im-

pact on asset pricing (Giglio et al., 2021; Stroebel and Wurgler, 2021),11 preference toward

sustainable investments (Bauer, Ruof, and Smeets, 2021), market responses to companies’

eco-friendly behavior (Klassen and McLaughlin, 1996; Flammer, 2013, 2021; Krüger, 2015),

transmission channels between ESG information and company valuation (Dunn, Fitzgibbons,

and Pomorski, 2018; Giese et al., 2019), the real social impact generated by green investors

(Dyck et al., 2019; Chen, Dong, and Lin, 2020), and implications for bank loans (Goss and

Roberts, 2011). The empirical evidence of a causal relation between the sustainability clas-

sification and capital inflows for U.S. mutual funds (Hartzmark and Sussman, 2019) further

highlights both the popularity and importance of impact investing today.

More generally, our framework is applicable to portfolios constructed on the basis of any

characteristic, including both impact proxies such as ESG and SRI measures and traditional

factors such as value, size, momentum, and other variables. As such, our work is related

to several strands of the asset pricing and econometrics literature. This includes a large

literature devoted to identifying asset pricing factors,12 a vast econometrics literature focused

on factor models,13 the literature on active portfolio management,14 and the literature on

data-snooping biases and the high dimensionality of cross-sectional asset-pricing models.15

In particular, we make use of the same statistical results on induced order statistics first

applied to financial data by Lo and MacKinlay (1990), albeit in a very different context.

11See also Hong, Karolyi, and Scheinkman (2020), Giglio, Kelly, and Stroebel (2021), and references
therein.

12See, for example, Chen, Roll, and Ross (1986), Fama and French (1993, 2015), Jegadeesh and Titman
(1993), Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Pástor and Stambaugh (2003), Yogo
(2006), Adrian, Etula, and Muir (2014), Hou, Xue, and Zhang (2015), and He, Kelly, and Manela (2017).

13See, for example, Fama and MacBeth (1973), Ferson and Harvey (1991), Shanken (1992), Lewellen,
Nagel, and Shanken (2010), Connor, Hagmann, and Linton (2012), Bai and Zhou (2015), Gagliardini, Ossola,
and Scaillet (2016, 2019), Gu, Kelly, and Xiu (2020), and Raponi, Robotti, and Zaffaroni (2020).

14In particular, the fundamental law of active management by Grinold (1989, 1994) and Grinold and Kahn
(1999, 2019).

15See, for example, Harvey, Liu, and Zhu (2016), Green, Hand, and Zhang (2017), Kozak, Nagel, and
Santosh (2018), Feng, Giglio, and Xiu (2020), and Freyberger, Neuhierl, and Weber (2020).
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3 The Framework

We consider a universe of N securities with returns Rit that satisfy the following linear

multi-factor model:

Rit −Rft = αi + βi1 (Λ1t −Rft) + · · · + βiK (ΛKt −Rft) + εit (1)

such that E[εit|Λkt] = 0 , k = 1, . . . , K (2)

where Λkt is the k-th factor return, k = 1, . . . , K, Rft is the risk-free rate, αi and βik are the

excess return and factor betas, respectively, and εit is the idiosyncratic return component.

Because we consider only a static model in this article, we omit the subscript t throughout

for notational simplicity.

Under suitable restrictions on the parameters {αi, βik} and the definitions of the factor

returns {Λk}, the linear multi-factor model (1) is consistent with a number of asset-pricing

models such as the Sharpe-Lintner Capital Asset-Pricing Model (CAPM) (Sharpe, 1964;

Lintner, 1965), Merton’s Intertemporal CAPM (Merton, 1973), Ross’s Arbitrage Pricing

Theory (APT) (Ross, 1976), and the Fama-French multi-factor models (Fama and French,

1993, 2015). In particular, all of these asset-pricing models imply that αi = 0, and that

returns are simply the sum of the risk-free rate plus all the risk premia multiplied by the

asset’s corresponding risk exposures or βik’s.

However, to measure the impact of impact investing, we take no position as to whether

any particular asset-pricing model holds. Instead, we derive the implications of impact

investing on the statistical properties of impact-portfolio returns without constraining excess

returns to be zero. These properties can then be used to interpret impact from multiple

perspectives.

3.1 The No-Impact Baseline Case

We begin by stating the near-trivial result that arbitrary portfolios formed according to

criteria unrelated to the parameters of the return-generating processes {Rit} are necessarily

less than or equal to the investment performance of the mean-variance optimal portfolio.16

Proposition 1. If asset returns satisfy (1)–(2) and α1 = · · · = αN = 0, then any arbi-

trary subset S ⊆ {1, . . . , N} formed independently of the joint distribution of returns, {Rit},
16Proofs of all propositions are provided in the Appendix.
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satisfies the following inequality:

max
{ω1,..., ωN |

∑N
i=1 ωi=1}

E[U(W )] ≥ max
{ωc1,..., ωcN |

∑
i∈S ω

c
i=1 and ωci=0 for i/∈S }

E[U(W c)] (3)

for any non-decreasing concave utility function U(·) where

W ≡
N∑
i=1

ωiRi and W c ≡
∑
i∈S

ωciRi . (4)

In addition, under certain fairly realistic conditions given in the Appendix, we show that

the loss in utility by restricting to the subset S is generally small, as long as the number of

securities excluded by S is small relative to the total number of securities, N .

This proposition confirms the common critique that skeptics often level against impact in-

vesting. If the constraint S has nothing to do with the characteristics of the underlying asset

returns, {Ri}, then imposing such constraints can only reduce investment performance or,

at best, achieve the unconstrained optimum. In particular, the independence of S and {Ri}
implies that the excess returns, {αi}, are indistinguishable from {εi}, in which case we are

essentially assuming zero excess returns, so there is no possibility of generating any excess

performance.17 In addition, although impact investing in this special case cannot improve

returns, the under-performance is likely to be small (assuming no transactions costs or fees,

of course).

However, suppose we allow for non-zero alphas that are unobserved to investors; in other

words, the unconstrained optimization problem in (3) does not have the ability to find

securities with positive alphas.18 If we relax the condition that S is independent of the joint

distribution of {Ri}, then Proposition 1 clearly does not hold. For example, suppose:

S = { i : αi > 0 , i = 1, . . . , N} . (5)

Clearly in this case, it is possible for the risk-adjusted returns of the S-portfolio to beat those

of the unconstrained portfolio, given that the subset contains all positive-alpha securities and

the complement contains the reverse. This conclusion may seem counterintuitive because

the constrained portfolio is, by definition, a feasible solution in the unconstrained case, so

17In this baseline portfolio selection problem, investors do not have information on the impact of individual
securities, or X defined in the next section. In other words, investors maximize their unconditional mean-
variance utility, which corresponds to the “type-A (ESG-aware)” investors in Pedersen, Fitzgibbons, and
Pomorski (2021).

18An alternative interpretation adopted by, for example, Adler and Kritzman (2008) is that certain in-
vestors have skills that yield alphas private to themselves.
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how can imposing the constraint ever improve performance? The answer lies in the fact

that, in the unconstrained case, information about the {αi} is not available—the constraint

contains private information19 that can dramatically improve performance. Therefore, the

constrained solution is actually not feasible in the unconstrained case.

So the fundamental question of whether an impact investment has positive (or nega-

tive) financial impact reduces to the information content in the constraint, i.e., the relation

between the constraint and the joint distribution of asset returns. No relation implies no

information, hence no impact. But the presence of even the slightest amount of dependence

between the constraint and returns implies the possibility of some degree of impact. We can

quantify this degree by being explicit about the statistical relation between asset returns

and the impact factor.

Of course, this counter-example assumes the existence of mispriced or positive-alpha

securities (5), but an equally valid equilibrium/no-arbitrage interpretation is that the αis are

omitted factors from the investor’s linear-factor benchmark. Either investors are unaware of

these factors, or they do not have the ability to access them (e.g., exotic betas from private

equity, distressed debt, event-driven opportunities, etc.). Under this interpretation, impact

investing can be viewed as providing investors with alternative risk premia.

Our framework accommodates both interpretations—as we describe below—and offers a

systematic and quantitative approach to measuring impact in either case.

3.2 Impact Factors and Induced Order Statistics

To measure the effects of impact investing on investment performance, we assume that the

excess return of the i-the security, αi, is not observable, whereas the impact factor, Xi, for

that security is. Contrary to the usual asset-pricing set-up in which the αis are assumed to

be fixed constants (and, in equilibrium or under no-arbitrage conditions, identically equal to

0), we assume that they are random variables.

Impact investors select a portfolio based on the impact factor, X, and the excess return of

their portfolio is determined by the corresponding vector of excess returns of the individual

securities in that portfolio, α ≡ [α1 · · · αN ]T . Specifically, suppose an investor ranks N

securities according to X. Let us re-order the bivariate vector (Xi, αi)
T , i = 1, 2, · · · , N ,

19By private information, we mean that the alphas are assumed to be unobservable by investors. Without
the constraint, S, investors have no way to select securities with positive alphas. In this sense, the constraint
is, in fact, a mechanism for alpha selection and therefore contains valuable information.
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according to the magnitudes of their first components:(
X1:N

α[1:N ]

)
,

(
X2:N

α[2:N ]

)
, · · · ,

(
XN :N

α[N :N ]

)
(6)

where X1:N < X2:N < XN :N and the notation Xi:N denotes the i-th order statistic from a

total of N random variables. The notation α[i:N ] represents the i-th induced order statistic,20

where the order is induced by another variable X.

3.3 Defining an Impact Portfolio

Impact investing essentially corresponds to the selection of securities based on the impact

factor, X. For example, an investor may choose to invest in the top n0 securities ranked by

X, or form portfolios long the top decile and short the bottom decile. In general, we define

an impact portfolio to be any portfolio S(X) formed as a function of the impact factor, X.

With portfolio weights {ωi, i ∈ S}, the return of the impact portfolio is given by:

RS =
∑
i∈S

ωiRi. (7)

To characterize RS , we therefore need to quantify the distribution of the excess returns—

or the induced order statistic, α[i:N ], given certain assumptions on the joint distribution of

(X,α).

Note that X can represent a variety of characteristics related to metrics for climate

change, sustainable farming, tobacco usage, gambling, and any other SRI or ESG consid-

erations. In fact, our framework applies more generally to any characteristics of a security

including, for example, the traditional value, size, and momentum factors, as well as denizens

of the “factor zoo” described in the recent literature (Harvey, Liu, and Zhu, 2016; Feng,

Giglio, and Xiu, 2020; Hou, Xue, and Zhang, 2020). For the purposes of this study, we focus

on the impact investing interpretation, but will discuss broader interpretations in Section 7.

20The term was coined by Bhattacharya (1974) to distinguish between random variables ranked by their
own realized values versus random variables ranked by the realizations of related random variables. These
indirectly ranked statistics are also referred to as concomitants of the order statistic, Xi:N (David, 1973).
Lo and MacKinlay (1990) applied these same statistical tools to quantify data-snooping biases in testing
financial asset-pricing models.
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4 Characterizing Excess Returns

To assess the impact of impact portfolios, we require the distribution of α[i:N ], which can be

derived explicitly under the following assumption:

(A1) (Xi, αi)
T , i = 1, 2, · · · , N , are independently and identically distributed (IID) bivariate

normal random vectors with mean (µx, µα)T , variance (σ2
x, σ

2
α)T , and correlation ρ ∈

(−1, 1).

The assumption that αi is random is somewhat unconventional, so a few clarifying remarks

are in order. This assumption was first used in Lo and MacKinlay (1990) to represent cross-

sectional estimation errors of intercepts from CAPM regressions. However, in our current

context, we interpret the randomness in αi as a measure of uncertainty as to the degree

of mispricings of securities in our investment universe. This uncertainty can be interpreted

from a Bayesian perspective as the degree of conviction that mispricings exist in the cross

section. Under this interpretation, we will make the auxiliary assumption—without loss of

much generality—that all αis are mean 0 (µα=0). This corresponds to centering the Bayesian

prior on zero average deviations from equilibrium or no-arbitrage pricing in our investment

universe, a reasonable and more realistic first approximation that still allows for mispricings

which, of course, motivates a significant portion of the asset management industry’s products

and services.21 Moreover, we can calibrate the degree of mispricings in our model through

σ2
α—smaller values correspond to greater efficiency, and larger values correspond to lower

efficiency and more active management opportunities.

However, our framework can also be interpreted from an equilibrium/no-arbitrage per-

spective, where non-zero αis are due to the presence of omitted factors that investors are

either unaware of or unable to access directly. Under this interpretation, we will see below

that the randomness in αi is due to cross-sectional variability in security i’s omitted-factor

betas. In this case, however, it is possible for µα to be non-zero to reflect the risk premia of

the omitted factors.

Regardless of the interpretation of αi, the theory of induced order statistics allows us

to completely characterize its statistical properties. We first present its finite-sample distri-

bution, followed by asymptotic results when the number of securities, N , increases without

bound.

21In fact, Grossman and Stiglitz (1980) have argued that the presence of occasional mispricings is a
pre-requisite for achieving informationally efficient markets, otherwise, no one has any incentive to gather
information and incorporate it into market prices.
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4.1 Finite-Sample Distribution

We first observe that the mean and standard deviation of the impact factor, X, do not

actually matter for the distribution of α[i:N ]’s, because it is only the relative order of Xi’s

that determines the order of α[i:N ]’s. Therefore, we assume without loss of generality that

µx = 0 and σx = 1, so that X is a standard normal random vector. Then the following result

characterizes the finite-sample distributions of the induced order statistics {α[i:N ]}:

Proposition 2. Under Assumption (A1), the expected value of the i-th induced order statistic

α[i:N ], i = 1, 2, · · · , N is given by:

µi ≡ E
[
α[i:N ]

]
= ρσαE [Xi:N ] . (8)

The variance of the i-th induced order statistic α[i:N ], i = 1, 2, · · · , N is given by:

σ2
i ≡ Var

(
α[i:N ]

)
= σ2

α

(
1− ρ2 + ρ2Var (Xi:N)

)
. (9)

The covariance of the i-th and j-th induced order statistic, α[i:N ] and α[j:N ], for i 6= j is given

by:

σij ≡ Cov
(
α[i:N ], α[j:N ]

)
= σ2

αρ
2Cov (Xi:N , Xj:N) . (10)

Proposition 2 gives us the first two moments of the induced order statistics, α[i:N ]’s. In

particular, the expected alpha in (8) is determined by three terms: the correlation (ρ)

between X and individual securities’ alphas, the standard deviation of individual alphas

(σα), and a cross-sectionally standardized impact score (E [Xi:N ]). The correlation ρ here

plays a critical role in determining the expected alpha of both individual securities and

impact portfolios (see Section 5). This resembles the CAPM’s market beta—which quantifies

security returns attributable to systematic market risk—because the market beta is simply

the correlation between security returns and market returns when they are both standardized

with unit variances.

If we view the impact factor X as a signal for predicting asset returns, the expected

alpha in (8) is closely related to the results by Grinold (1994),22 who provides a simple

decomposition of alpha into the product of three terms: the information coefficient (the

correlation ρ in our notation), the volatility of residual returns, and a standardized score that

measures the strength of the signal for each asset. In our context, it is the volatility of the

unobserved alpha (not the volatility of residual returns) that determines the expected alpha

of each asset. In addition, because we only use the rank information in X, the standardized

22See also Grinold and Kahn (1999).
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score can be quantified explicitly by E [Xi:N ]. Finally, our results also provide the variance

and covariances of individual alphas, which is crucial for quantifying the uncertainty of these

alphas in practice.

We note that all three quantities in (8)–(10) depend on the distribution of the order

statistics of standard normal random variables. In fact, the terms E [Xi:N ] in (8), Var (Xi:N)

in (9), and Cov (Xi:N , Xj:N) in (10) can be explicitly evaluated by numerical integration over

the density function of Xi:N (see David and Nagaraja (2004, Section 3.1), for example).

On the other hand, we can also explicitly evaluate the quantities in (8)–(10) based on

the following approximation results:

Proposition 3. Let pi ≡ i
N+1

denote the relative position of the order i in the population

of N securities. The expected value and variance of the i-th order statistic of the standard

normal random variable, Xi:N , can be approximated up to order (N+2)−2, when N increases

without bound, by:

E [Xi:N ] ≈ Φ−1(pi) +
pi(1− pi)
2(N + 2)

Q′′i +
pi(1− pi)
(N + 2)2

[
1

3
(1− 2pi)Q

′′′
i +

1

8
pi(1− pi)Q′′′′i

]
(11)

and

Var (Xi:N) ≈ pi(1− pi)
N + 2

Q′i
2

+
pi(1− pi)
(N + 2)2

[
2(1− 2pi)Q

′
iQ
′′
i + pi(1− pi)

(
Q′iQ

′′′
i +

1

2
Q′′i

2

)]
(12)

for i = 1, 2, · · ·N . And their covariances can be approximated up to order (N + 2)−2, when

N increases without bound, by:

Cov (Xi:N , Xj:N) ≈ pi(1− pj)
N + 2

Q′iQ
′
j +

pi(1− pj)
(N + 2)2

[
(1− 2pi)Q

′′
iQ
′
j + (1− 2pj)Q

′
iQ
′′
j

+
1

2
pi(1− pi)Q′′′i Q′j +

1

2
pj(1− pj)Q′iQ′′′j +

1

2
pi(1− pj)Q′′iQ′′j

] (13)
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for 1 ≤ i < j ≤ N . Here Q′i, Q
′′
i , Q

′′′
i , and Q′′′′i are the first four derivatives of Φ−1(pi):

Q′i =
(
Φ−1(pi)

)′
=

1

φ (Φ−1(pi))
(14)

Q′′i =
(
Φ−1(pi)

)′′
=

Φ−1(pi)

φ (Φ−1(pi))
2 (15)

Q′′′i =
(
Φ−1(pi)

)′′′
=

1 + 2 (Φ−1(pi))
2

φ (Φ−1(pi))
3 (16)

Q′′′′i =
(
Φ−1(pi)

)′′′′
=

Φ−1(pi)
(

7 + 6 (Φ−1(pi))
2
)

φ (Φ−1(pi))
4 . (17)

Φ and φ are the cumulative distribution function (CDF) and density function of the standard

normal distribution, respectively.

Although the approximations in Proposition 3 may seem daunting, their first-order terms

are fairly intuitive. The first term in (11) is Φ−1(pi), which simply approximates E [Xi:N ] by

the inverse CDF applied to the relative rank, pi ≡ i
N+1

, of the i-th order statistic, which is

a well-known first-order approximation by itself.23

Figure 1 displays the mean, variance, and covariances of the induced order statistic, α[i:N ],

for a collection of N = 50 securities, as given in Proposition 2 using the approximations in

Proposition 3. When the correlation, ρ, between α and X is positive, the expected value of

the induced order statistic increases as the order i increases (see Figure 1a). The dispersion

of the mean is larger when the correlation, ρ, or the dispersion of the unknown α, σα, is

larger.

In addition, Figure 1b shows that the variances, Var (Xi:N), stay relatively constant across

the ordered securities i and are primarily determined by ρ and σα. In fact, we will see in

Section 4.3 that as the number of securities increases without bound, the variance converges

to a constant across all i.

Finally, the covariances, Cov (Xi:N , Xj:N), are very close to zero except when i and j are

close to 0 or 50, the two extremes. We will also see in Section 4.3 that as N increases without

bound, the covariances approach zero, implying that induced order statistics are mutually

independent in the limit.

23In fact, E [Xi:N ] ≈ Φ−1(pi) is a reasonable first-order approximation. For example, David and Nagaraja
(2004, Sections 4.5 and 4.6) give the following bound: Φ−1

(
i−1
N

)
≤ E [Xi:N ] ≤ Φ−1

(
i
N

)
.

16



(a) Expected Value (b) Variance

(c) Covariances

Figure 1: Mean, variance, and covariances of the induced order statistic, α[i:N ]. The total
number of securities is set to 50 for illustrative purposes. In (c) we set ρ=20% and σα=5%.
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4.2 Comparison with Conventional Order Statistics

To develop further intuition for the effect of induced ordering, we compare the distributions of

induced order statistics with their conventional order statistics counterparts, αi:N . Note that

this comparison is merely meant to be an illustrative thought experiment; α is unobservable

by assumption, hence such rankings are not feasible in practice. Nonetheless, this provides

a useful comparison to what can be achieved by ordering based on the impact factor, X.

Proposition 4. Under Assumption (A1), the first two moments of the induced order statis-

tic, α[i:N ], are related to the order statistic, αi:N , by the following identities:

µi ≡ E
[
α[i:N ]

]
= ρE[αi:N ] (18)

σ2
i − σ2

α ≡ Var
(
α[i:N ]

)
− σ2

α = ρ2
[
Var (αi:N)− σ2

α

]
(19)

σij ≡ Cov
(
α[i:N ], α[j:N ]

)
= ρ2Cov (αi:N , αj:N) . (20)

Proposition 4 tells us that the mean, variance, and covariances of the induced order statistics,

α[i:N ], are essentially a discounted version of the corresponding moments of the conventional

order statistics, αi:N . The discount factor, ρ, is precisely the correlation between X and α.

To visualize this effect, Figure 2 contains a comparison of the expected excess returns

of the induced order statistic, α[i:N ], and the order statistic, αi:N , for a collection of N = 50

securities. As the correlation, ρ, increases to 1, the expected excess return approaches the

hypothetical value of sorting based on α.

Figure 2: Comparison between the expected value of the induced order statistic, α[i:N ], and
the order statistic, αi:N , with N=50 and σα=5%.
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This result highlights the role that induced ordering plays in distinguishing securities

with positive alpha from those with negative alpha. The correlation between the sorting

variable (in our case, the impact factor) and the target variable (in our case, the unobserved

α) determines how much of the mean, variance, and covariances from a hypothetical sorting

based on α can actually be achieved via the induced ordering of X.

4.3 Asymptotic Distribution

As the number of securities, N , increases without bound, the limiting joint distribution of

the induced order statistics, α[i:N ], has been derived by Yang (1977) and does not require the

normality assumption (A1), hence we can rely on this asymptotic approximation for large

samples.

Proposition 5. Assuming (X1, α1)
T , · · · , (XN , αN)T are IID, for any sequence 1 < i1 <

· · · < in < N such that, as N →∞, ik/N → ξk ∈ (0, 1) for k = 1, · · · , n, we have:

lim
N→∞

P
(
α[i1:N ] < a1, · · · , α[in:N ] < an

)
=

n∏
k=1

P (αk < ak|Fx(Xk) = ξk) , (21)

where Fx(·) is the marginal CDF of Xi.

Proposition 5 implies that the induced order statistics at distinct quantiles are asymptotically

independent, consistent with the finite sample observations in Proposition 3 and Figure 1.

Also, because the conditional distribution of jointly normal random vectors is still normal,

we can characterize the first two moments of the induced order statistics asymptotically via

the following result.

Proposition 6. Under Assumption (A1), as N increases without bound, the induced order

statistics, α[ik:N ] (k = 1, · · · , n), converge in distribution to independent Gaussian random

variables with mean µ(ξk) and variance σ2(ξk), where

µ(ξk) ≡ ρ(σα/σx)
[
F−1x (ξk)− µx

]
= ρσαΦ−1(ξk), (22)

σ2(ξk) ≡ σ2
α(1− ρ2). (23)

Note that the mean and variance here are consistent with the finite-sample results in Propo-

sition 2 when k/N converges to ξk. The mean depends on the order k (shown in Figure 3),

and its shape is very similar to the finite-sample case (Figure 1a). On the other hand, the

variance, σ2(ξk), is a constant across all quantiles.
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Figure 3: Asymptotic mean of the induced order statistic, α[ik:N ], as ik/N → ξ ∈ (0, 1).

4.4 Interpreting Excess Return as Omitted Factors

Having completely characterized the stochastic properties of the excess returns α of securities

ranked according to an arbitrary impact factor X, we now provide an explicit derivation of

the equilibrium/no-arbitrage interpretation of α as risk premia associated with omitted

factors.

Let security returns follow the K-factor asset-pricing model as specified in (1)–(2), but

now assume there are no mispricings. However, suppose that investors only account for

the first factor Λ1, without loss of generality, and are unaware of the remaing K−1 factors

Λ2, . . . ,ΛK . We define:

λik ≡ βik(Λk −Rf ) (24)

to be factor k’s contribution to security i’s return, for i = 1, . . . , N and k = 2, . . . , K, and

λi ≡
K∑
k=2

λik (25)

to be the total net contribution of all the omitted factors to security i’s return. Given that

investors are unaware of factors 2, . . . , K, the total excess expected returns for the securities

in our universe appear to be alphas to such investors:

αi ≡ E[λi] =
K∑
k=2

βik(E[Λk]−Rf ) . (26)
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To characterize the distribution of λi after ranking securities based on the impact factor

X, we make the following assumption:

(A2) (Xi, λi)
T , i = 1, 2, · · · , N , are bivariate normal random vectors with their marginal

distributions and paired correlations defined by:

µx ≡ E[Xi], µλ ≡ E[λi], σ
2
x ≡ Var(Xi), σ

2
λ ≡ Var(λi), and ρx,λ ≡ Corr(Xi, λi) (27)

for i = 1, . . . , N . In addition, the correlation across different securities are defined by:

ρx ≡ Corr(Xi, Xj), ρλ ≡ Corr(λi, λj), and ρ̃x,λ ≡ Corr(Xi, λj) (28)

for i 6= j.

Under this assumption, the cross-sectional randomness of λi can be interpreted as variations

coming from both the factor values and the distribution of factor betas across companies in

our universe. (Xi, λi)
T can be correlated across securities, and their correlation structure is

described by the four parameters ρx,λ, ρ̃x,λ, ρx, and ρλ.

We can characterize the first two moments of λ[i:N ]. Recall that the notation λ[i:N ] denotes

the i-th induced order statistic where the order is induced by the impact factor X. We again

assume without loss of generality that µx = 0 and σx = 1, so that X is a standard normal

random vector. But we allow for a non-zero risk premium µλ.

Proposition 7. Under Assumption (A2), define

ρadj ≡
ρx,λ − ρ̃x,λ

1− ρx
(29)

to be an adjusted correlation. The expected value of the i-th induced order statistic λ[i:N ], i =

1, 2, · · · , N is given by:

E
[
λ[i:N ]

]
= µλ + ρadjσλE [Xi:N ] . (30)

The variance of the i-th induced order statistic λ[i:N ], i = 1, 2, · · · , N is given by:

Var
(
λ[i:N ]

)
= σ2

λ

(
1− ρ2adj + ρ2adjVar (Xi:N)

)
. (31)

The covariance of the i-th and j-th induced order statistic, λ[i:N ] and λ[j:N ], for i 6= j is given

by:

Cov
(
λ[i:N ], λ[j:N ]

)
= σ2

λρ
2
adjCov (Xi:N , Xj:N) +

(
ρλ − ρxρ2adj

)
. (32)
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Similar to our results in Proposition 2, the expected return from omitted factors in (30)

is closely related to Grinold’s (1994) decomposition of alpha. In particular, we provide a

generalization to Grinold’s (1994) results in the context of factor returns when the cross-

sectional dependence is specified by Assumption (A2).

Proposition 7 characterizes the return from omitted factors for the i-th security induced

by the impact factor X. This result highlights an important implication when estimating

the financial impact of impact investing. Given any definition of impact, X, if the portfolio

selected based on X produces a non-zero excess return, X must be correlated with some

factors not previously accounted for in the asset-pricing framework. This may imply the

existence of a new factor that corresponds to the very definition of X, such as an “ESG

factor” or a “carbon factor” (Bolton and Kacperczyk, 2021).

On the other hand, Proposition 7 also implies that, when forming a portfolio, if one uses

a selection criteria that appears independent of return characteristics such as market betas

and factor loadings, it may still be correlated with omitted factor risk premiums, in which

case the selection criteria will produce nonzero excess returns. In other words, what appears

to be an “impact factor” (a selection criteria X based on a particular concept) may just be

correlations with other omitted factors that are, in fact, unrelated to the impact concept one

intends to capture. Therefore, impact estimates may be inaccurate and misleading without

first properly accounting for all known factors.

This observation is supported empirically by both Blitz and Fabozzi (2017) in the case of

estimating excess returns for sin stocks, and Madhavan, Sobczyk, and Ang (2021) for ESG

scores, both of which we discuss in more detail in Section 6.

5 Impact Portfolio Construction

Having quantified the distribution of the induced order statistics, α[i:N ], we can now construct

portfolios based on the impact factor, X, and characterize the statistical properties of their

excess returns. We first quantify the performance of arbitrary impact portfolios, followed

by a special case—equal-weighted portfolios—which is also related to how to estimate ρ and

σα empirically. We then use the Treynor and Black (1973) framework to derive the optimal

weights for each security, as well as the optimal way to combine an impact portfolio with

any existing portfolio such as the passive market index. The latter result follows directly

from our ability to completely characterize the statistical properties of individual alphas in

our framework.

22



5.1 Properties of Arbitrary Impact Portfolios

Consider an arbitrary impact portfolio of n0 securities with indexes in S:

S ≡ {i1, i2, · · · , in0} (33)

which is obtained from a rank-ordering of securities from the investment universe according

to the impact factor, X. The excess return of the portfolio is then given by:

α̃ ≡
∑
i∈S

ωiα[i:N ] (34)

where {ωi : i ∈ S} are arbitrary portfolio weights that sum to 1. Based on the distribution

of the individual induced order statistics in Proposition 2, we have the following result for

portfolio excess returns:

Proposition 8. Under Assumption (A1), the expected excess return of a portfolio S defined

in (33) is:

E [α̃] =
∑
i∈S

ωiµi = ρσα
∑
i∈S

ωiE [Xi:N ] , (35)

and the variance is:

Var (α̃) =
∑
i∈S

ω2
i σ

2
i + 2

∑
i<j∈S

ωiωjσij

=σ2
α

(
1− ρ2 + ρ2

(∑
i∈S

ω2
i Var (Xi:N) + 2

∑
i<j∈S

ωiωjCov (Xi:N , Xj:N)

))
.

(36)

Proposition 8 quantifies the distribution of excess returns for any portfolio constructed ac-

cording to the impact factor, X. This result implies that the full range of tools and results

from modern portfolio theory can be applied here, including: the calculation of various per-

formance metrics such as the Sharpe ratio (Sharpe, 1966), Sortino ratio (Sortino and Van

Der Meer, 1991; Sortino and Price, 1994), and information ratios (Treynor and Black, 1973);

performance attribution (Brinson and Fachler, 1985; Brinson, Hood, and Beebower, 1986;

Brinson, Singer, and Beebower, 1991); and active portfolio management and enterprise risk

management (Grinold and Kahn, 1999).

To develop intuition for Proposition 8, consider a portfolio formed by selecting the top n0

securities based on X. For a market with N=50 securities, Figure 4 displays the mean and

variance of the excess return of portfolios formed in this way. As the number of securities in

the portfolio, n0, increases, the excess return decreases because more securities with weaker
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alphas are included. At the same time, the variance of the portfolio also decreases thanks

to the diversification from more securities.

(a) Expected Value (b) Variance

Figure 4: Distribution of portfolio excess return formed by the top n0 securities ranked by
the impact factor, X. The number of total securities, N , is set to be 50.

Another typical way of forming portfolios is to sort all securities in the universe into 10

deciles based on X. Figure 5a contains the expected excess returns of the 10 deciles, which

has a similar shape to the expected excess returns of individual securities in Figure 1a.

(a) N=50 (b) N →∞

Figure 5: Expected excess return for decile portfolios formed by ranking the impact factor,
X. In (a) the number of total securities, N , is set to be 50, and in (b) we show the case
when N increases without bound.

Finally, we can also consider portfolios as N increases without bound. Suppose we divide

the [0, 1] interval into L segments each of length 1/L, and pick M equally-spaced quantiles

within each segment. Specifically, the l-th portfolio is formed by selecting the following
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quantiles:

ξl,m =
l − 1 + m

M+1

L
, m = 1, 2, · · · ,M (37)

for l = 1, 2, · · · , L. Figure 5b shows the expected excess returns of this portfolio when

L=M = 10, which, not surprisingly, has a similar shape to Figure 5a because the portfolio

formed by (37) is the limit of the decile portfolio when N increases without bound.

5.2 Estimation of ρ and σα.

Two key parameters that characterize the distribution of induced order statistics in Proposi-

tions 2 and 6 are ρ, the correlation between unobserved α and X, and σα, the cross-sectional

standard deviation of αi. A special case of Proposition 8—equal-weighted portfolios—

provides a way to estimate these parameters in practice. Consider an equal-weighted portfolio

S defined in (33) with portfolio weights ωi = 1/n0. In this case, Proposition 8 implies that

the expected value and variance of portfolio alphas are given by:

E [α̃] =
ρσα
n0

∑
i∈S

E [Xi:N ] , (38)

Var (α̃) = σ2
α

(
1− ρ2 +

ρ2

n2
0

(∑
i∈S

Var (Xi:N) + 2
∑
i<j∈S

Cov (Xi:N , Xj:N)

))
. (39)

Empirical studies usually report excess returns from equal-weighted portfolios formed by

ranking some stock characteristics such as the P/E ratio, book-to-value, or ESG score. As

a result, the expected value and variance of the impact-portfolio alpha in (38)–(39) lead to

a natural estimator of these two parameters based on historical data.

In particular, suppose one empirically measures the portfolio alpha and its variance,

which can be substituted into (38)–(39) to yield a system of two equations with respect to ρ

and σα, where parameters such as the number of securities in the portfolio (n0) and the total

number of securities in the universe (N) can be easily obtained. This leads, in principle, to

a solution for ρ and σα.

On the other hand, if the variance of the impact-portfolio alpha is difficult to estimate

empirically, one can still use (38) to calibrate ρσα, from which ρ can be solved based on

assumptions about the spread in cross-sectional α.

In addition, it is worth emphasizing that the estimation of ρ depends implicitly on the

frequency of historical data used to estimate impact-portfolio excess returns, α̃. In theory, if

the two terms in (38), α̃ and σα, both scale linearly as the frequency varies, the estimates of

ρ should stay invariant with respect to weekly, monthly, or annual returns. However, they
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may lead to different empirical estimates in practice, and therefore, the correlation estimated

from this procedure should be interpreted in the same frequency space as the return data

used.

We apply these methods to four empirical examples in Section 6.

5.3 Treynor-Black Portfolios

A key advantage of our framework is the ability to characterize the alphas of arbitrary

impact portfolios via induced order statistics. Given this representation, it is clear that

equal-weighted portfolios are not optimal in terms of achieving the best risk-adjusted returns.

However, Treynor and Black (1973) provide a methodology that is designed to maximize a

portfolio’s Sharpe ratio, which can be directly applied in our case to derive optimal weights

for securities selected by the impact factor. To apply the Treynor-Black framework, we

rewrite the excess return of the i-th security, αi, as its mean plus noise:

αi = µi + ζi (40)

where {ζi} are independent random variables with zero means. We can then combine ζi

with security i’s idiosyncratic error, εi. Because ζi and εi are independent, the combined

idiosyncratic variance for security i is simply σ2
i + σ(εi)

2, where σ2
i is given in (9).

Given any number of securities selected by X, we can form an optimal portfolio based

on the Treynor-Black weights, which we summarize in the following result:

Proposition 9. Under Assumption (A1), the Treynor-Black weight of security i is propor-

tional to its expected alpha divided by its combined idiosyncratic variance:

ωi ∝
µi

σ2
i + σ(εi)2

. (41)

In addition, if the idiosyncratic volatility, σ(εi), is constant across securities i, as N increases

without bound, the Treynor-Black weight of security i in (41) can be further simplified to:

ωi ∝
ρσαΦ−1(ξi)

σ2
α(1− ρ2) + σ(εi)2

∝ Φ−1(ξi) · Constant. (42)

Proposition 9 gives an explicit formula for the Treynor-Black weights that optimize the risk-

adjusted returns of the impact portfolio, which can easily be implemented in practice. For

further intuition behind (41), recall that the variance of the i-th induced order statistic, σ2
i , is

approximately a constant when N is large (see Figure 1b and Proposition 6). The expected
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excess return, µi = ρσαE [Xi:N ], varies with respect to i only through the last term E [Xi:N ].

As a result, if each security’s idiosyncratic volatility is the same, the Treynor-Black weights

of security i in (41) depend only on their relative ranking in the universe of N securities,

which is specified by the term Φ−1(ξi) in (42).

For an illustrative example, consider a portfolio formed by the top n0 securities ranked by

X, and let n0 vary from 1 to 250. We assume for a moment that the idiosyncratic volatility is

15% for all securities. Figure 6 depicts the weights of this portfolio. As expected, securities

that rank higher have higher weight. Based on Proposition 9, the weights in Figure 6 are

determined only by the relative rank of the i-th security in the universe of N securities. In

other words, changing the correlation, ρ, between α and X does not affect these weights.

(a) N=50 (b) N=500

Figure 6: Treynor-Black weights of the securities in the impact portfolio formed by top-
ranking securities based on the impact factor, X, with (a) N=50; and (b) N=500.

The portfolio selected by ranking X and applying the Treynor-Black weights in (41) is

one specific example of an impact portfolio we defined in Section 3.3. Treynor and Black

(1973) call this the “active management” portfolio, and its return characteristics are given

by:

αA =
n∑
k=1

ωkµk, (43)

βA =
n∑
k=1

ωkβk, (44)

σ(εA)2 =
n∑
k=1

ω2
k

(
σ2
k + σ(εk)

2
)
. (45)

These results—together with the explicit quantification of individual-security alphas in
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Proposition 2 and 7, and the optimal Treynor-Black weights in Proposition 9—provide a

complete characterization of the performance of optimal impact portfolios. In particular,

the information ratio of the impact portfolio, defined as E[αA]/σ(εA), is proportional to the

correlation, ρ, between unobserved alpha, α, and the impact factor, X. This is closely related

to the fundamental law of active management (FLAM) by Grinold (1989),24 which provides

a simple approximation of the information ratio of an active portfolio by the product of

information coefficient (ρ in our notation) and the breadth of a strategy.25

Figure 7 contains the expected excess return, αA, for two examples of the impact portfolio

in a collection of N=500 securities. Figure 7a depicts portfolios formed by selecting the top

n0 securities ranked by X. The expected value decreases as n0 increases and more securities

are included. Figure 7b depicts portfolios formed by dividing all securities into four quantiles

based on the ordering of X. In both cases, Treynor-Black portfolios (solid line) achieve higher

expected excess returns than the equal-weighted portfolios (dashed line).

(a) Top n0 Portfolio (b) Quantile Portfolio

Figure 7: Expected excess return of the impact portfolio formed based on Treynor-Black
weights, with N=500 and σα=5%. The expected excess return of the corresponding equal-
weighted portfolios are shown in dashed lines for comparison. (a) shows the case where the
top-ranking securities are selected. (b) shows the case where all securities are divided into
four segments based on ranking.

24See also (Grinold and Kahn, 1999, chapter 6) and (Grinold and Kahn, 2019, chapter 4 and 5) for recent
developments.

25In Grinold’s (1989) framework, breadth is defined as the number of independent bets of a strategy in
a given year. In our context, breadth is determined by the number of available assets in the universe. In
addition, our framework can be regarded as a generalization of the initial FLAM because the impact portfolio
only uses the rank information in X. For more discussion on impact portfolio analytics and its relationship
with FLAM under more general distributional assumptions on (α,X), see Lo et al. (2022).
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5.4 Combining Impact and Passive Portfolios

Once the relative weights of the securities within an impact portfolio are determined, one

can combine the portfolio with any other portfolio. For example, we may form an impact

portfolio by ranking a company’s impact on global warming, which can be combined with

other characteristics such as sustainable farming, tobacco usage, and gaming, to form an

overall “ESG” portfolio. We can also add the impact portfolio to the suite of portfolios

mimicking more traditional asset pricing factors such as value, size, and momentum.

However, perhaps the most natural application is to consider combining the impact port-

folio with a passive index fund such as the market portfolio. Let ωA denote the weight of

the impact portfolio, and 1− ωA the weight of a passive portfolio. To maximize the Sharpe

ratio of the combined portfolio, the relative weight is determined by the impact portfolio’s

excess return and idiosyncratic volatility:

ωA =

αA
σ(εA)2

E[Rm]−Rf
σ2
m

(46)

where E[Rm] and σ2
m are the expected return and variance of the passive portfolio, respec-

tively.

We illustrate the impact portfolio’s alpha and its corresponding weight, ωA, using a

numerical example. Suppose the passive portfolio has an annualized risk premium of E[Rm]−
Rf = 6% and volatility of σm = 15%. The idiosyncratic volatility is a constant σ(εi) = 15%

for all securities.26 Consider again a collection of N = 500 securities. We divide them into

10 decile portfolios ranked by the impact factor, X. For several different values of ρ and σα,

Table 1 reports the weight, ωA, and expected excess return of the impact portfolio, where

we present the top and bottom two decile portfolios.

We first consider the case in which the cross-sectional standard deviation σα = 1%. In

other words, most securities’ excess returns are within [−2σα, 2σα] = [−2%, 2%]. This is a

very conservative assumption for U.S. equities, but even with such a modest range of α, the

optimal portfolio contains significant weight from the impact portfolio. For example, ωA for

the top decile is 0.66 when the correlation ρ= 30%, and 0.22 when ρ= 10%. Observe that

ρ2 is simply the R2 of the cross-sectional regression of α on X, so a 30% (10%) correlation

implies that only 9% (1%) of the variation in α is explained by X, which is a fairly plausible

assumption for a typical impact factor.

When the cross-sectional standard deviation, σα, is doubled to 2%, the optimal weight,

26This is an innocuous assumption and we show later via simulation that cross-sectional heterogeneity in
idiosyncratic volatilities does not affect our conclusions.
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Table 1: Expected excess returns for the impact portfolios and their corresponding Treynor-
Black weights when combined with a passive portfolio. We set N=500 and assume that the
passive portfolio has an annualized expected excess return of E[Rm]−Rf = 6% and volatility
of σm=15%. The idiosyncratic volatility is a constant σ(εi)=15% for all securities.

Correlation ρ
Weight ωA Expected Excess Return αA

Bottom 2nd 9th Top Bottom 2nd 9th Top
σα = 1%

30% (R2 = 9%) -0.66 -0.39 0.39 0.66 -0.6% -0.3% 0.3% 0.6%
10% (R2 = 1%) -0.22 -0.13 0.13 0.22 -0.2% -0.1% 0.1% 0.2%
−10% (R2 = 1%) 0.22 0.13 -0.13 -0.22 0.2% 0.1% -0.1% -0.2%
−30% (R2 = 9%) 0.66 0.39 -0.39 -0.66 0.6% 0.3% -0.3% -0.6%

σα = 2%
30% (R2 = 9%) -1.31 -0.78 0.78 1.31 -1.1% -0.6% 0.6% 1.1%
10% (R2 = 1%) -0.44 -0.26 0.26 0.44 -0.4% -0.2% 0.2% 0.4%
−10% (R2 = 1%) 0.44 0.26 -0.26 -0.44 0.4% 0.2% -0.2% -0.4%
−30% (R2 = 9%) 1.31 0.78 -0.78 -1.31 1.1% 0.6% -0.6% -1.1%

σα = 5%
30% (R2 = 9%) -3.23 -1.93 1.93 3.23 -2.8% -1.6% 1.6% 2.8%
10% (R2 = 1%) -1.08 -0.64 0.64 1.08 -0.9% -0.5% 0.5% 0.9%
−10% (R2 = 1%) 1.08 0.64 -0.64 -1.08 0.9% 0.5% -0.5% -0.9%
−30% (R2 = 9%) 3.23 1.93 -1.93 -3.23 2.8% 1.6% -1.6% -2.8%

ωA, becomes larger. In addition, the expected excess return αAs are also substantial, even

with a mild correlation, ρ.

When σα=5%, the impact portfolio has a weight of 3.23 for the top decile when ρ=30%.

This implies a highly leveraged portfolio in which more than 200% of the passive portfolio is

shorted. The corresponding gain in expected excess return is 2.8% when ρ=30% and 0.9%

when ρ=10%.

More generally, Figure 8 displays two metrics for the combined portfolio that consists of

the impact and passive portfolios, with two different levels of σα. In Figures 8a and 8b we

consider σα = 2%. In other words, most of the securities have an alpha within [−4%, 4%].

The weights of the active portfolio range from −1.5 to 1.5, depending on the correlation

between α and X (Figure 8a). The expected excess return of the combined portfolio ranges

from 0% to over 2.5% (Figure 8b).

In Figures 8c and 8d we consider σα = 5%. In other words, most of the securities have

an alpha within [−10%, 10%]. This is not unimaginable in some highly volatile sectors such

as biotech. The weights of the active portfolio can be as high as two, indicating a leveraged

impact portfolio and a short position in the passive market portfolio (Figure 8c). In this

case, the expected excess return of the impact portfolio can yield up to 14% (Figure 8d)!
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(a) σα=2%: Weights (b) σα=2%: Excess Return

(c) σα=5%: Weights (d) σα=5%: Excess Return

Figure 8: Performance metrics for the combined portfolio that consists of the impact portfolio
with N=500 and passive market portfolio with an annualized risk premium of E[Rm]−Rf =
6% and volatility of σm = 15%. The idiosyncratic volatility is a constant σ(εi) = 15% for
all securities. (a) and (b) show the Treynor-Black weight for the impact portfolio and the
overall expected excess return, respectively, for σα=2%. (c) and (d) show the same metrics
for σα=5%.
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Finally, we show how our impact portfolio improves the efficient frontier and the Capital

Market Line to achieve a “super-efficient frontier” under the assumption that α are mispric-

ings. Under the alternate omitted-factor interpretation, the “super-efficiency” of the new

frontier may be viewed as the result of additional risk premia not accessible to investors

except through impact portfolio managers.

Proposition 10. Under Assumption (A1), the return of the final portfolio, P , that consists

of the impact portfolio with Treynor-Black weights and the passive market portfolio is:

RP −Rf = ωARA + (1−ωA)Rm−Rf = ωAαA + (Rm−Rf )(βAωA + (1−ωA)) +ωAεA, (47)

where Rm is the return of the passive portfolio. The expected value and variance of RP are

given by:

E[RP ]−Rf = ωAαA + (E[Rm]−Rf )(βAωA + (1− ωA)), (48)

Var[RP ] = Var[Rm](βAωA + (1− ωA))2 + ω2
Aσ(εA)2. (49)

This forms a super-efficient frontier in comparison to the Capital Market Line associated

with the passive portfolio.

Figure 9 displays the passive portfolio as well as several combinations with impact portfolios

in relation to the efficient frontier. We continue to assume that the passive portfolio has an

annualized risk premium of E[Rm] − Rf = 6% and volatility of σm = 15%. In Figure 9a,

the idiosyncratic volatility is assumed to be a constant σ(εi)=15% for all securities. As the

correlation, ρ, and variance in alpha, σ2
α, increase, the impact portfolios (defined as the top

half of the securities ranked by X) are able to improve the original Capital Market Line,

leading to super-efficient frontiers.

The results in this section have so far relied on the unrealistic assumption that the

idiosyncratic volatility, σ(εi), is cross-sectionally constant. To check the robustness of our

results, we simulate a collection of securities where the i-th security’s idiosyncratic volatility

follows a lognormal distribution:

log (σ(εi)) ∼ Normal(µε, σε). (50)

Calibrating this process to empirically plausible values in the literature (e.g., Kuntz (2020)),

we perform simulations for log(µε)=15% and σε=1.

Figure 9b confirms that even with such cross-sectional heterogeneity, the Capital Market

Line is still improved, leading to super-efficient frontiers. Compared with the simpler case in
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(a) Constant σ(εi) (b) Simulated σ(εi)

Figure 9: Super-efficient frontiers from the combined portfolio that consists of the impact
portfolio with N = 500 and passive market portfolio with an annualized risk premium of
E[Rm]−Rf = 6% and volatility of σm=15%. In (a) the idiosyncratic volatility is a constant
σ(εi)=15% for all securities. In (b) we simulated idiosyncratic volatility based on (50) and
apply a maximum leverage ratio of 3:1.

Figure 9a, the magnitude of the improvements in alpha for the combined portfolios is bigger.

The two examples in Figure 9 are based on impact portfolios formed with the top half of

the securities ranked according to X. More generally, each investor can decide on the most

suitable subset of securities depending on their desired level of impact. In the special case

of an ESG metric, this process yields the “ESG-efficient frontier” of Pedersen, Fitzgibbons,

and Pomorski (2021), which provides the highest attainable Sharpe ratio for each ESG level.

Our results add to Pedersen, Fitzgibbons, and Pomorski (2021) in two ways. First, we

provide the explicit construction of the optimal impact portfolio, thanks to our ability to

characterize impact-ranked returns for individual securities in Proposition 2-9, which yields

an explicit measure of the degree to which X improves or worsens the efficient frontier.

Second, in their framework, the standard mean-variance tangency portfolio has the highest

Sharpe ratio among all portfolios, and restricting portfolios to have any ESG score other

than that of the tangency portfolio must yield a lower Sharpe ratio (Pedersen, Fitzgibbons,

and Pomorski, 2021, p. 573). Our framework shows that, when there are non-zero α that

are otherwise inaccessible to investor (either interpreted as mispricings or omitted factors),

simply using the impact factor, X, to form portfolios based on ranking or subsetting can also

improve the efficient frontier, because of the information implicit in the selection criteria.
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6 Applications to Four Impact Investments

In this section, we apply our framework to four particular examples of impact investing:

biotech venture philanthropy, divesting from sin stocks, ESG investing, and the GameStop

short squeeze during January 2021.

6.1 Venture Philanthropy: The Cystic Fibrosis Foundation

The concept of venture philanthropy (VP) was introduced by Letts, Ryan, and Grossman

(1997), who suggested that nonprofit organizations could learn useful practices from venture

capitalists, including due diligence, risk management, performance measurement, relation-

ship management, investment duration and size management, and exit strategies. This

approach has received a great deal of attention both within and outside the field (Gross-

man, Appleby, and Reimers, 2013), and has now been applied to education (Scott, 2009),

community redevelopment (Van Slyke and Newman, 2006), and medical R&D (Scaife, 2008;

Salzman, 2016), among other fields. In particular, recent biomedical advances have created

significant opportunities for a new generation of therapeutics (Sharp and Hockfield, 2017).

However, early-stage R&D efforts often face a dearth of funding, given the high risk of failure

and significant funding requirements. This has been particularly true for rare disease drug

development, where market sizes are often too small to attract much attention and funding

(Kim and Lo, 2019).

We consider the example of the Cystic Fibrosis (CF) Foundation—profiled in the case

study by Kim and Lo (2019)—and conclude that VP in biomedicine can produce significant

positive excess returns. This example illustrates the possibility of an impact investment that

is positively correlated with α, or an omitted factor that patient advocacy groups can more

easily exploit than typical investors.

The CF Foundation is the world’s leading philanthropic organization for CF, a rare ge-

netic disease that currently affects more than thirty thousand Americans. Over a period

of 12 years, the CF Foundation invested $150 million to fund CF drug development efforts

at Vertex Pharmaceuticals, a Boston-based biotechnology firm. This work led to the iden-

tification and development of Kalydeco, the first FDA-approved treatment to address the

underlying causes of CF. The Foundation’s investment entitled them to receive royalties cal-

culated as a percentage of future sales of successful CF drugs. In 2014, their rights to Vertex

royalties were sold to an outside investment firm, New York City-based Royalty Pharma, for

$3.3 billion in cash.

From the financial perspective, a $3.3 billion return from a $150 million investment is
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the dream scenario for any investor, but it could seem like just one individual success story.

If we consider CF Foundation’s entire portfolio of VP efforts, they allocated a medical and

research budget of $87 million across more than 500 awards in 2012, and over $160 million

across more than 1,100 awards in 2016 (Kim and Lo, 2019). Apparently, from the portfolio

perspective, the $3.3 billion return is still very attractive after factoring in CF Foundation’s

investments in other projects, even assuming everything else did not produce any financial

reward.27

If we assume for simplicity that the $150 million investment was made upfront and the

$3.3 billion sale occurred 12 years later, this implies a compound annual return of 29.4%

over this period. To estimate the realized α of this investment, we require an estimate of

the cost of capital of Vertex during the 12-year investment period from 2002 to 2013, prior

to the 2014 royalty sale. Figure 10 displays the 250-day rolling-window daily estimated beta

of Vertex from 17 July 1992 to 30 December 2020, and the average value between 2 January

2001 and 31 December 2013 was 1.42. The average 5-year constant-maturity Treasury yield

from January 2001 to December 2013 was 2.8%,28 and the annualized compound return of

the CRSP value-weighted returns index with dividends during this period was 5.4%, hence

a simple CAPM estimate of the cost of capital is 1.42× (5.4%− 2.8%) + 2.82% = 6.5%.

Of course, this crude estimate does not account for the illiquid nature of biomedical assets

and the financing risks that their multi-year investment horizons pose. A cost of capital

of 20% for privately held biotech investments is a commonly used industry benchmark.

Therefore, a plausible range for the α of the CF Foundation’s investment in Vertex is 9.4%

(using a 20% cost of capital) to 22.9% (using a 6.5% cost of capital).

Using this estimated range for the CF Foundation’s α, and making a few additional

assumptions about auxiliary parameters, we can reverse-engineer the implied correlation, ρ,

that is consistent with this performance range, which is [35%, 86%].29 Our highly stylized

calculations are not meant to yield a rigorous estimate of the true alpha associated with

drug development for rare diseases, and the plausible range of the true alpha is likely larger,

potentially including zero. But more systematic empirical analyses of the biopharma industry

show that pharmaceutical companies have become increasingly profitable, with risk-adjusted

returns outperforming the aggregate stock market in recent years (Thakor et al., 2017; Lo

27In fact, since 2014, the CF Foundation has sold additional royalty interests, bringing their total invest-
ment returns to over $4 billion since inception. However, for our purposes, we focus only on the single sale
to Royalty Pharma for simplicity since it occurred at a single point in time.

28See https://fred.stlouisfed.org/series/GS5/.
29We assume that the cross-sectional standard deviation of α is σα = 10%, and the CF Foundation’s

investment in Vertex ranks at the top 1% of N=10, 000 securities based on a “rare disease impact investing”
factor. If we assume, instead, that σα=20%, the implied correlation range is [18%, 43%].
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Figure 10: 250-day rolling-window estimated daily beta coefficients for Vertex Pharmaceu-
ticals from 17 July 1992 to 30 December 2020.

and Thakor, 2019). The example of the CF Foundation provides additional intuition for

how impact and investment performance need not be a zero-sum game in the presence of

sufficient correlation between impact and performance.

However, there is a deeper message in this striking example, which is that, in certain

cases, impact is a pre-requisite for performance. The CF Foundation’s main objective—

helping to create a disease-modifying drug for CF—was, in fact, the primary source of

Vertex’s outsized investment performance. The fact that the Foundation focused on this one

long-term goal—to the exclusion of shorter-term financial metrics and milestones—and was

willing to continue investing in Vertex over multiple years despite business cycle fluctuations

(including the 2008 Financial Crisis) contributed significantly to its success (both in impact

and in financial returns). Indeed, many traditional venture capitalists have shied away from

investing in projects with such high risks and long-term capital commitments. In other words,

in this case, correlation may actually be causation; impact can sometimes be responsible for

financial success.

More generally, most early-stage drug development programs have low probabilities of

success, long time horizons, and large capital requirements (Fagnan et al., 2013), making

them less attractive investments than alternatives in other industries like software, social
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media, telecommunications, etc. In recent years, new tools have emerged to quantify and

diversify the risk in these investments (Fagnan et al., 2013; Thakor et al., 2017). Our impact

framework provides a systematic approach for constructing impact portfolios and measuring

their financial performance, and properly measuring and managing the risk of these invest-

ments is the first step towards encouraging more capital to be allocated to accelerate drug

development and build greater social value.

6.2 Divesting Sin Stocks

Another particular type of impact investing is avoiding or divesting sin stocks—stocks from

companies involved in or associated with activities considered unethical or immoral. Al-

though there may be a degree of subjectivity involved in determining what is considered

sinful, common examples include companies involved in producing, distributing, or other-

wise supporting alcohol, tobacco, gambling, sex-related industries, and firearms. It has been

found that sin stocks are less held by norm-constrained institutions such as pension plans as

compared to mutual or hedge funds, and receive less coverage from analysts. As a result, sin

stocks seem to yield higher expected returns (Fabozzi, Ma, and Oliphant, 2008; Hong and

Kacperczyk, 2009; Statman and Glushkov, 2009), an observation also shared by Fauver and

McDonald IV (2014) on international stocks.

This empirical fact implies a negative correlation between a stock’s excess return and an

“anti-sin stock” factor. In terms of the super-efficient frontier shown in Figure 9, divesting

from sin stocks likely yields a negative return and a lower efficient frontier. This leads to a

natural definition of the cost to this specific impact factor.

We use Hong and Kacperczyk (2009) to calibrate our model and focus on tobacco, alcohol,

and gambling as proxies for sin stocks. The authors report a monthly excess return of 0.26%

for an equal-weighted portfolio long sin stocks and short their comparables, by running a

time series regression controlling for market, size, value, and momentum factors, using equity

data in United States from 1965 to 2006.30 This estimate can be used to calculate the implied

correlation between α and X in our model, using results from Propositions 2 and 6 (see also

discussions in Section 5.2).

Panel A of Table 2 summarizes these calibration results.31 The implied correlation is

27% (R2 =7.2%), assuming a standard deviation of cross-sectional alpha of σα=5%.32 This

30Hong and Kacperczyk (2009) use monthly returns. The authors also run a cross-sectional regression
controlling firm characteristics and get similar excess returns.

31Hong and Kacperczyk (2009) report 193 sin stocks in their selection, and Blitz and Fabozzi (2017)
report that sin stocks are about 2.5% of the universe. We calibrate to these parameters when determining
the quantiles of the induced order statistics in, for example, (22).

32Note that different assumptions about σα lead to different estimates of ρ, but not the final estimates of
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leads to a measure of the cost of avoiding sin stocks. If we form an impact portfolio based

on the top half of all securities based on the anti-sin factor, it leaves an excess return of

1.7% per annum on the table. If we form a Treynor-Black portfolio based on the omitted sin

stocks and the passive market portfolio, we could have achieved a leveraged alpha of 14.4%

per annum with a (leveraged) weight of 8.58 for the sin stocks portfolio. On the other hand,

if we form an impact portfolio by leaving out only the top decile (or top 2%) of the most

sinful stocks, the opportunity cost is 2.5% (3.3%).

Table 2: Estimated cost in excess return per annum for avoiding sin stocks, calibrated to
prior empirical studies. Here we assume that the passive portfolio has an annualized risk
premium of E[Rm]−Rf = 6% and volatility of σm=15%.

Impact
Portfolio

Weight of
Impact Portfolio

ωA

Expected Excess Return
Impact Portfolio

αA

Combined with Passive Portfolio
ωAαA

Panel A: Hong and Kacperczyk (2009)
Implied correlation ρ=27% (R2 =7.2%) assuming σα=5%.
Top Half 8.58 1.7% 14.4%
Top Decile 3.78 2.5% 9.35%
Top 2% 1.04 3.3% 3.4%
Panel B: Blitz and Fabozzi (2017)
Implied correlation ρ=10% (R2 =1.1%) assuming σα=5%.
Top Half 3.30 0.6% 2.1%
Top Decile 1.45 1.0% 1.4%
Top 2% 0.40 1.3% 0.5%

In fact, a few studies have tried to understand why sin stocks appear to show positive

excess returns.33 In particular, Blitz and Fabozzi (2017) show that sin stocks indeed exhibit

a significantly positive CAPM alpha, but this alpha disappears completely when controlling

not only for classic factors such as size, value, and momentum, but also for exposures to

the two new Fama and French (2015) quality factors—profitability and investment. We also

summarize the implied correlation and cost to avoid sin stocks based on Blitz and Fabozzi

(2017) in Panel B of Table 2.34 Both the correlation and sin-stock excess returns decrease

sharply based on this study.

the cost of avoiding sin stocks because the expected alpha in (22), for example, is invariant of the product
of the two (ρσα).

33For example, Kim and Venkatachalam (2011) find that sin stocks’ financial report quality is superior to
other comparable stocks.

34Blitz and Fabozzi (2017) use monthly returns. For U.S. data in 1963–2016, the authors report a non-
significant monthly excess return of 0.10%. This number becomes negative when restricting to data after
1990.

38



This example highlights the fact that the measurement of excess returns of impact in-

vesting depends on the specific asset-pricing model used to estimate alpha. Our framework

can be applied to any number of factors as specified in (1)–(2). Indeed, a factor may yield

positive correlation with alpha under one asset-pricing model (implying a positive excess

return), and may disappear or change sign after controlling for additional factors.

6.3 ESG Investing

More generally, SRI and ESG-aware investing have both drawn an increasing amount of at-

tention in recent years. Our model provides a systematic framework to measure the financial

impact of SRI and ESG—positive or negative—and construct optimal portfolios based on

the correlation between the impact characteristic and excess returns.

Compared to sin stocks, the empirical evidence on ESG’s excess returns is mixed. On the

one hand, several studies find that portfolios or funds with high environmental scores tend

to outperform otherwise comparable investments (Bansal, Wu, and Yaron, 2021; Madhavan,

Sobczyk, and Ang, 2021; Shing, 2021). On the other hand, others argue that the evidence

that markets reward companies for being “good” is weak to non-existent (Alessandrini and

Jondeau, 2020; Cornell and Damodaran, 2020), which is supported by recent evidence that

green bonds—bonds whose proceeds are used for environmentally sensitive purposes—are

indeed priced at a premium, implying a lower yield compared to otherwise equivalent bonds

(Baker et al., 2021).35

As with the sin stocks in Section 6.2, we also calibrate our model with respect to several

studies in Table 3. Panel A uses the MSCI World ESG Leaders index, which yields an excess

return of 0.07% per annum compared to the MSCI World index over the past 10 years.36

This implies a correlation of 1.6% (R2 = 0.0%) between stock alpha and the MSCI ESG

scores based on our model, which leads to an excess return of 0.10% (0.20%) per annum

for the impact portfolio formed by the top half (top 2%) of the MSCI ESG stocks. This is

consistent with opinions from industry advocates of ESG, although the magnitude of excess

returns here is quite small. For example, Edmund Shing, the Global Chief Investment Officer

of BNP Paribas Wealth Management, wrote in Shing (2021): “Responsible investing not an

EITHER/OR choice, but an AND...you can choose a sustainable/responsible investment

strategy and outperform non-sustainable benchmarks.”

In contrast, Baker et al. (2021) study the U.S. bond market over the period 2010–2016 and

35For additional discussion on this topic, see Renneboog, Ter Horst, and Zhang (2008), de Franco (2020),
and Pedersen, Fitzgibbons, and Pomorski (2021).

36See MSCI (2021) which reports that 724 stocks are included in the MSCI World ESG Leaders index
compared to 1,559 for the MSCI World index.
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Table 3: Estimated ESG excess returns per annum, calibrated to prior empirical studies.
Here we assume that the passive portfolio has an annualized risk premium of E[Rm]−Rf =
6% and volatility of σm=15%.

Impact
Portfolio

Weight of
Impact Portfolio

ωA

Expected Excess Return
Impact Portfolio

αA

Combined with Passive Portfolio
ωAαA

Panel A: MSCI (2021)
Implied correlation ρ=1.6% (R2 =0.0%) assuming σα=5%.
Top Half 0.11 0.10% 0.01%
Top Decile 0.05 0.15% 0.00%
Top 2% 0.01 0.20% 0.00%
Panel B: Baker et al. (2021)
Implied correlation ρ=−2.0% (R2 =0.04%) assuming σα=1%.
Top Half -1.06 -0.02% -0.03%
Top Decile -0.47 -0.04% -0.02%
Top 2% -0.13 -0.05% -0.00%
Panel C: Bansal, Wu, and Yaron (2021) (“good times”)
Implied correlation ρ=22% (R2 =4.7%) assuming σα=5%.
Top Half 2.69 1.35% 3.64%
Top Decile 1.19 1.99% 2.37%
Top 2% 0.33 2.65% 0.88%
Panel D: Bansal, Wu, and Yaron (2021) (“bad times”)
Implied correlation ρ=−0.2% (R2 =0.0%) assuming σα=5%.
Top Half -0.02 -0.01% -0.00%
Top Decile -0.01 -0.02% -0.00%
Top 2% -0.00 -0.02% -0.00%
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report a yield difference of 6 basis points at issuance for green bonds below other ordinary

bonds.37 This corresponds to a plausible and economically meaningful 0.6% difference in

value on a bond with a 10-year duration. Panel B of Table 3 shows the implied correlation

of −2%.38 This result points to a negative ESG alpha in the bond market.

In addition, using stock data from S&P 500 and Russell 3000 in 1993–2013, Bansal,

Wu, and Yaron (2021) document a “luxury-good effect” for ESG.39 Stocks with higher ESG

ratings significantly outperform lower-ranked ones during good economic times, but not

during bad economic times, resembling the demand for luxury goods.

We report the implied correlation between stock alpha and the ESG factor based on

their estimates for good and bad economic times, in Panels C and D of Table 3, respectively.

During good economic times defined by the cyclically-adjusted real P/E (CAPE) ratios from

Shiller (2005), Bansal, Wu, and Yaron (2021) report a monthly Fama-French four-factor

alpha of 0.315% for the top-bottom ESG portfolio. This implies a 22% correlation between

stock alpha and the ESG factor, and sizable positive excess returns for the impact portfolios.

However, during bad economic times, the monthly Fama-French four-factor alpha in Bansal,

Wu, and Yaron (2021) becomes −0.0026%, rendering all of our estimates of correlation and

ESG alpha to be essentially zero.

The three studies we highlight in Table 3 underscore the difficulty in measuring consistent

excess returns of ESG, which depend on many factors including the asset class, region, and

time period. In addition, the specific choice of asset-pricing model also affects the empirical

estimates of ESG alpha. For example, Madhavan, Sobczyk, and Ang (2021) show that the

security selection alpha by U.S. equity mutual fund managers is related to ESG scores, but

only through the component correlated with existing style factors such as value, quality, and

momentum. In contrast, no significant relationship was found with the idiosyncratic ESG

components not related to style factors. In the context of mutual funds, Geczy, Stambaugh,

and Levin (2021) show that the SRI cost depends on the investor’s views about asset-pricing

models and manager skills. In particular, the SRI cost is minimal compared to a CAPM-

investor but may be substantial when investors allow for size, value, and momentum factors,

as well as managerial skill.

372,083 green U.S. municipal bonds are used in the sample, compared to 643,299 ordinary bonds.
38We assume the standard deviation of cross-sectional alpha is σα=1% because of smaller magnitudes for

bond returns. Similar to our results for sin stocks, different assumptions about σα lead to different estimates
of ρ, but not the final estimates of the ESG alpha.

39Bansal, Wu, and Yaron (2021) use monthly returns.
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6.4 The GameStop Phenomenon

In January 2021, the share price of Gamestop Corp. (GME)—a struggling videogame retailer

that had recently announced a 30% decline in 2020Q3 net sales, due in part to an 11%

reduction in their store base—went from $17.25 on January 5 to an all-time high of $347.51

on January 27. Although few investment professionals would consider GME an “impact

investment,” it is difficult to categorize it as anything else given the apparent origin of its

meteoric price spike.

The key turning point for GME seemed to be growing interest among retail investors

affiliated with the Reddit forum “r/WallStreetBets.”40 While it is difficult to determine the

exact cause and motivation behind the early initiators,41 the GME price spike is unlikely to

have been driven by changes in the fundamentals of the company,42 but rather caused by a

combination of a grass-roots “David vs. Goliath” conflict between retail investors and hedge-

fund shortsellers, and trend followers taking advantage of this dynamic. Other stocks that

seemed to be involved in this movement included AMC Entertainment Holdings (AMC) and

Blackberry (BB), both of which were facing shortselling pressure from institutional investors

in late 2020 and into January 2021. These events attracted substantial media attention due

to the populist narrative that was playing out on social media at the time, as well as the

extraordinary price gyrations and wealth transfers involved. As shown in Figure 11, if an

investor bought $1 of GME at the beginning of December 2020, she would have gained over

$20 at the end of January 2021, before crashing back to under $3 the next month.

In this sense, WallStreetBets participants can be viewed as impact investors. And by

most accounts, they have been highly successful in achieving the impact they desired, i.e.,

punishing the shortsellers and pushing up the price of an underdog company bullied by elite

institutional investors. However, to distinguish this type of activity from traditional impact

investing, we shall call the GME phenomenon “price-impact investing”.

In the case of GME, it is almost obvious in retrospect that the very act of investing

can produce a positive α, at least for a short period of time.43 However, the same strategy

may not work as well for other stocks. In general, all stocks can be affected by such price-

impact investors in theory, but the degree to which each of them is susceptible depends

40A literature quantifying the effect of Reddit activities on the GME mania has already emerged. See Long,
Lucey, and Yarovaya (2021), Lyócsa, Baumöhl, and Vŷrost (2021), and Umar et al. (2021) for example.

41For example, Hasso et al. (2021) profile retail investors participating in the frenzy using individual
brokerage data, and find that GME investors had a history of investing in lottery-like stocks prior to investing
in GME. This implies that individual investors may not purely engage in a digital protest against Wall Street.

42In fact, GME’s revenue has been declining year over year since 2017 and its earnings-per-share has been
negative since 2018.

43What constitutes a “short” period of time is clearly subjective and context dependent—as of August 13,
2021, GME’s close price was $157.41, still nearly 10 times higher than what it was at the start of 2021.
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Figure 11: Growth of one dollar invested in GameStop (GME), AMC Entertainment Holdings
(AMC), and Blackberry (BB).

on a number of factors, including its market capitalization, liquidity, price dynamics, main

shareholders, amount of short interest, sentiment and attention from the general public,

and so on. Moreover, manipulating the prices of publicly traded equities clearly violates

both securities law and anti-trust regulation,44 hence there are significant ethical and legal

ramifications of this type of impact investing that have yet to be fully explored. Nevertheless,

our impact framework provides a means to measure the magnitude of such investments, which

could be an important component of policy debates on whether and how to regulate this

type of activity. To that end, we can apply well-known market-microstructure models such as

Bertsimas and Lo (1998) to first quantify the relation between short-term trading programs

and market price reactions.

A Simple Execution Model. Following Bertsimas and Lo’s (1998) framework and nota-

tion, we assume that an investor seeks to purchase a total of S̄ shares of a particular security

over a fixed time interval, [0, T ]. The investor decides how to divide S̄ into smaller purchases

distributed throughout the interval so as to maximize the final price-impact of the security.45

The answer depends, of course, on the degree to which a single purchase affects the market

price, i.e., the “price impact” and the dynamics of future market prices. Given a particular

price-impact function and a specification for the price dynamics, an optimal trading strategy

that maximizes the price impact of acquiring S̄ in [0, T ] may be obtained.

44See the Securities Exchange Act of 1934, Section 9, and the Sherman Act and the Commodity Exchange
Act.

45Note that this is not the objective function considered by Bertsimas and Lo (1998)—the problem they
pose is how to divide S̄ so as to maximize cumulative profits, which they solve via stochastic dynamic
programming.
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Specifically, denote by St the number of shares acquired in period t at price Pt, where

t=1, 2, · · · , T . Then the investor’s objective of maximizing final price impact is given by:

max
{St}

E[PT ] (51)

subject to the constraint that the desired number of shares are acquired:

T∑
t=1

St = S̄. (52)

We assume that the security price follows the bivariate stochastic process:

Pt = Pt−1 + θSzt + γFt + εt, θ > 0, z ∈ (0, 1]

Ft = δFt−1 + ηt, δ ∈ (−1, 1)
(53)

where εt and ηt are independent white noise processes with mean 0 and variance σ2
ε and

σ2
η, respectively. The parameter θ specifies the magnitude of the price impact, which is

assumed to follow a power law in St, where the parameter z specifies the “price sensitivity”

of the security or, equivalently, the security’s degree of illiquidity. The latter interpretation

is motivated by Kyle’s (1985) market microstructure model in which liquidity is measured

by a loglinear-regression estimate of the log-volume required to move the price by one dollar.

Sometimes referred to as “Kyle’s lambda,” this measure is an inverse proxy of liquidity, with

higher values of lambda implying lower liquidity and lower market depth.46

The presence of Ft in the law of motion for Pt captures the potential impact of market

conditions or private information about the security. For example, Ft might represent new

business opportunities created by the company. However, Ft can also represent the impact

of popular sentiment, as in the case of GME, as well as any of the other factors mentioned

above. In either case, the impact of Ft on trading profits and the time series properties

of Ft both have important implications for the feasibility and profitability of price-impact

investing. With these price dynamics, the following result completely characterizes the

optimal price-impact strategy and its corresponding expected profit:

Proposition 11. Under the price dynamics specified by (53), the strategy that maximizes

46See also Lillo, Farmer, and Mantegna (2003) and Almgren et al. (2005) for more detailed explorations of
the power law of price impact in equity markets. When z=1, this reduces to the “linear price impact with
information” specification from Bertsimas and Lo (1998).
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the total price impact, (51), is given by:

S1 =S2 = · · ·=ST =
S̄

T
, (54)

and its corresponding expected profit is given by:

V ∗ =

(
θS̄z(T − 1)

2T z
+
γδF1

(
1− TδT−1 + (T − 1)δT

)
(1− δ)2T

)
S̄. (55)

In fact, when z=1 and price impact is linear in trading quantities,47 it does not matter how

trades are allocated because the total impact from T trades is always equal to the impact of

one single trade of size S̄. However, when the price impact is a concave function in general

(0<z<1), the optimal strategy is to simply divide the total order S̄ into T equal “waves,”

and trade them at regular intervals, as specified in (54).

The expression for V ∗ in (55) shows that the expected profit of price-impact investing

depends on two factors: the market impact as parameterized by θ and z, and influences from

other factors (sentiment, liquidity, private information, etc.) as parameterized by γ and the

AR(1) coefficient governing these other factors (δ).

To illustrate the effect of these parameters on trading profit V ∗, we simulate a universe

of N=500 securities where the parameters, θ, z, γ, and δ, are generated by four independent

uniform distributions on [0, 1]. In the following analysis, we assume that the first realization

of X1 =1, without loss of generality.

In Figure 12a, we first show the relationship of the expected profit V ∗ with respect to

market impact (θ). As θ increases, expected profit increases as well. This is quite intuitive

because the stronger the market impact, the easier it is for short squeezers to induce price

momentum and generate profits. If we consider a collection of securities each with a differ-

ent θ, the correlation between their market-impact coefficients and expected profit is 37%,

implying that sorting α based on θ will generate positive excess returns in the context of

our impact-investing framework.

Figure 12b displays the relation between expected profit V ∗ and sensitivity z. As power

increases from 0 to 1, the expected profit decreases. This is because lower values of z

correspond to more concave price-impact functions, for which each small trading segment

has larger price impact. The correlation between z and expected profit is −63%. In other

words, one can achieve positive excess returns by selecting securities based on the reverse

ordering of sensitivity z.

47See also Bertsimas and Lo (1998).
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(a) Price impact (θ) (b) Market sensitivity (z)

(c) Influences from other factors (γ) (d) AR coefficient (δ)

Figure 12: The expected profit, V ∗, of price-impact investing as a function of four parameters
in (53), for a market with N =500 securities with simulated parameters. Here we set θ=1,
z = 1, γ = 1, δ = 10%, S̄ = 1, F1 = 1, and T = 30 by default, and vary each parameter
accordingly.
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Figure 12c displays the relation between expected profit V ∗ and influences from other

factors (γ), which has a weak positive correlation of 9%. Finally, Figure 12d displays the

relation between AR coefficient (δ) and expected profit. The expected profit is larger when

δ is larger. This is because we have assumed the first realization of Ft is positive, and

higher autocorrelations imply stronger momentum. Indeed, the correlation between the AR

coefficient, δ, and expected profit is 26% in this simulated market.

Implied Excess Returns. We summarize the results from Figure 12 in Table 4, and

provide their implied α when applied to a collection of 500 securities simultaneously, each

with different price dynamics as specified in (53). Panels A, B, and C show the expected

excess returns if investors apply θ, z, γ, and δ, respectively, to rank securities, where the

correlations with trading profits are obtained from our simple execution model. The expected

α can be very high with a leveraged portfolio, driven by the high correlation between stock

α and the price-impact investing factor in certain cases.

In practice, it is difficult to accurately calibrate the relevant parameters for each stock,

hence the expected profit of engaging in GME-like price-impact investing is correspondingly

difficult to estimate. However, this example highlights the fundamental determinants for a

price-impact investor’s α: the correlation between each stock’s trading profit and stock char-

acteristics, e.g., market capitalization, liquidity, specific forms of market impact, attention

from the general public, main shareholders, short interest, or anything correlated with stock

returns. Higher correlations lead to higher alpha when following that particular character-

istic to select target stock. In fact, stocks like GME, AMC Entertainment Holdings and

Blackberry were the perfect targets for the short squeezes that occurred at the end of 2020

to early 2021 because of their highly publicized amounts of short interest from hedge funds,

and high customer concentration in the young people, both of which are arguably correlated

features with short-squeeze profits.

7 Conclusion

In this article, we propose a new framework to quantify the financial value-added/subtracted

of impact investing. Using the theory of induced order statistics, we show that the correla-

tion between the impact factor, X, and the excess returns of individual securities determines

the excess return of the impact portfolio. The impact factor provides a ranking and selec-

tion mechanism for portfolio construction, and its correlation with α provides additional

information that can be used to achieve better risk-adjusted returns as well as impact.
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Table 4: Estimated excess returns per annum for the price-impact investing factor, based
on the optimal strategy’s profit in (55) and its implied correlations with respect to various
characteristics of individual securities. Here we assume σα = 5%, and the passive portfolio
has an annualized risk premium of E[Rm]−Rf = 6% and volatility of σm=15%.

Impact
Portfolio

Weight of
Impact Portfolio

ωA

Expected Excess Return
Impact Portfolio

αA

Combined with Passive Portfolio
ωAαA

Panel A: Ranking based on price impact (θ)
Model-implied correlation with alpha: ρ=37%.
Top Half 9.19 2.3% 21.4%
Top Decile 4.09 3.4% 14.0%
Top 2% 1.20 4.5% 5.4%
Panel B: Ranking based on market sensitivity (z); reverse order
Model-implied correlation with alpha: ρ=63%.
Top Half 15.58 3.9% 61.5%
Top Decile 6.95 5.8% 40.3%
Top 2% 2.04 7.6% 15.5%
Panel C: Ranking based on other factors (γ)
Model-implied correlation with alpha: ρ=9%.
Top Half 2.20 0.6% 1.2%
Top Decile 0.98 0.8% 0.8%
Top 2% 0.29 1.1% 0.3%
Panel D: Ranking based on AR coefficient for other factors (δ)
Model-implied correlation with alpha: ρ=26%.
Top Half 6.43 1.6% 10.5%
Top Decile 2.87 2.4% 6.9%
Top 2% 0.84 3.2% 2.7%
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In practice, we require estimates of α to measure the correlation between X and α,

which we demonstrate empirically in a current project involving a wide range of ESG metrics

(Berg et al., 2022). Then why not just estimate α and stop there? The reality is that not all

investors have access to good estimates of α, not to mention the alphas of more sophisticated

impact portfolios. Our framework explicitly quantifies the fundamental relationship between

impact alpha and its correlation with the impact factor, which provides a simple and unified

quantity that asset managers can disclose to investors. In this sense, this correlation is

analogous to the CAPM’s market beta, which reduces to the correlation between individual

security returns and market returns when they are both standardized to have unit variances.

The ability to quantify the distribution of alphas for impact-sorted securities allows us to

form Treynor-Black portfolios to exploit the alphas optimally. This is particularly relevant

for the investment management industry as it strives to bridge the gap between traditional

investment products and the growing demand for impact investments. Regardless of the

nature of the desired impact—whether it is biomedical innovation, promoting ESG, avoiding

socially unsavory businesses, or attempting to achieve certain price objectives—our frame-

work can be used to construct the most efficient way of investing in impact portfolios. And by

comparing the properties of impact portfolios on the Black-Treynor super-efficient-frontier

with those of non-impact investments, we have a concrete metric of the reward (or cost) of

impact investing, as demonstrated in the four examples above.

This provides all stakeholders with a practical toolkit for constructing impact portfolios,

and asset owners with a framework for assessing whether asset managers have satisfied their

fiduciary duties by engaging in specific types of impact investing. Our model compares

traditional investments without impact considerations, i.e., investments unconditioned on

any impact information X, with impact-aware investments, because this is the primary

consideration for fiduciaries deciding whether or not to invest in ESG and other impact-

related portfolios. On the other hand, one can also separate the information component

from the impact factor X from investor preferences for portfolios with more impact, as

Pedersen, Fitzgibbons, and Pomorski (2021) demonstrated in their framework.48

In fact, an investment’s alpha can itself be influenced by its impact, as demonstrated

in our example of venture philanthropy. If the Cystic Fibrosis Foundation were not able to

achieve the impact to develop effective drugs for cystic fibrosis, it is unlikely that they could

have generated any meaningful return. In this sense, there is an endogenous and likely a

causal relationship between X and alpha. Another example of realizing alpha by achieving

48Pedersen, Fitzgibbons, and Pomorski (2021) consider three types of investors termed Type-U (ESG-
unaware), Type-A (ESG-aware) and Type-M (ESG-motivated). As a result, they derive an ESG-efficient
frontier which shows the highest attainable Sharpe ratio for each ESG level.

49



impact is activist investing, for which it has been empirically documented that activists may

help their portfolio companies improve production efficiency (Brav, Jiang, and Kim, 2015),

long-term fundamentals (Bebchuk, Brav, and Jiang, 2015), and stock performance (Dimson,

Karakaş, and Li, 2015).

In practice, the correlations between excess returns and the impact factor X are not static.

As new concepts emerge and grow, investors move into them progressively. For example, the

idea that portfolio managers should include company-specific carbon risk exposures in their

investment process was greeted with mainly skepticism in a not-so-distant 2010 conference

(Andersson, Bolton, and Samama, 2016), in contrast to today’s 4,578 UNPRI signatories,49

of which 74% are asset managers, 15% are asset owners, and 11% are service providers. In

this adaptive process (Lo, 2004, 2017), the correlation reinforces itself as the amount of assets

under management and the number of products that are attempting to take advantage of a

given X increase over time, and eventually stabilizes as the size of the new sector reaches

a steady state. In this respect, the GameStop example of Section 6.4 offers an alternate

explanation of the presence of climate-related risk premia as documented by Bolton and

Kacperczyk (2021). Even in the absence of any real relationship between a company’s carbon

emissions and its business prospects, if enough investors care about its carbon footprint

because of general environmental awareness, this factor can have an impact on the company’s

returns, thereby inducing a risk premium.

More broadly, our framework is relevant not just to impact proxies such as SRI and ESG

metrics, but applies to any characteristics that may be correlated with excess returns. This

includes traditional factors such as value, quality, size, and momentum, as well as hundreds

of new factors and anomalies in the “Factor Zoo” discussed in the recent literature (Harvey,

Liu, and Zhu, 2016; Feng, Giglio, and Xiu, 2020; Hou, Xue, and Zhang, 2020). From this

perspective, our model has defined a measure for the alpha of any factor, providing a unified

framework for SRI, ESG, and beyond.

Our framework may also help inform regulators and policymakers on the most appropriate

tools to encourage investments with more socially-aware goals. Not all types of impact

investing are created equal. When these investments create positive excess returns, one

must understand what drives the initial under-valuation in the first place, and what risks

are preventing investors from participating in these opportunities. In the case of venture

philanthropy in biomedical research and development, for example, it is crucial to develop

new tools to mitigate risks from low probabilities of success, long time horizons, and large

capital requirements (Fagnan et al., 2013; Thakor et al., 2017).

49https://www.unpri.org/signatories/signatory-resources/signatory-directory (accessed 7 De-
cember 2021).
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On the other hand, when impact investing incurs a cost to investors, at the very least, it

suggests the need for more explicit investor disclosures. It may also justify certain incentives

and industrial policies,50 such as tax benefits and R&D grants to encourage the growth of

these socially beneficial firms and organizations. One case in point is the area of green energy

where, for example, Baker et al. (2021) document a lower yield for green bonds compared

to otherwise equivalent bonds. Governments around the world are designing policies to

help grow industries such as clean energy and electric vehicles. Even if they incur a cost

in the short to medium term, as a society we need to invest in them if we value greater

sustainability.

Indeed, our analysis underscores the fact that finance need not be a zero-sum game.

While impact investing does imply sacrificing excess returns in certain situations, in other

situations it is, in fact, possible to achieve impact and attractive financial returns at the same

time. We hope to apply our framework more broadly so as to identify more opportunities

for doing well by doing good.

50See Lin and Chang (2009) for example.
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A Appendix

In this Appendix, we provide proofs for all the propositions.

A.1 Proof of Proposition 1

The constraints on the right-hand side optimization problem of (3) is a subset of the left-hand
side optimization problem. Therefore the inequality follows.

To give a bound on the utility loss between the unconstrained portfolio W and the
constrained portfolio W c, we consider an intermediate portfolio W c1 that is also constrained
to the subset S, but with equal factor loadings as the unconstrained portfolio W . In other
words, the portfolio weights for W c1 satisfy the following conditions:

ωc1i = 0 for i /∈ S (A.1)∑
i∈S

ωc1i = 1 (A.2)

N∑
i=1

ωiβik =
∑
i∈S

ωc1i βik for k = 1, . . . , K. (A.3)

Because W c maximizes the utility in (3),

E[U(W c)] = E

[
U

(
Rf +

K∑
k=1

∑
i∈S

ωciβik (Λk −Rf ) +
∑
i∈S

ωci εi

)]

≥ E

[
U

(
Rf +

K∑
k=1

∑
i∈S

ωc1i βik (Λk −Rf ) +
∑
i∈S

ωc1i εi

)]

= E

[
U

(
Rf +

K∑
k=1

N∑
i=1

ωiβik (Λk −Rf ) +
∑
i∈S

ωc1i εi

)]
= E[U(W c1)].

(A.4)

Now we consider the utility of the following two portfolios,

E[U(W )] = E

[
U

(
Rf +

K∑
k=1

N∑
i=1

ωiβik (Λk −Rf ) +
N∑
i=1

ωiεi

)]
,

E[U(W c1)] = E

[
U

(
Rf +

K∑
k=1

N∑
i=1

ωiβik (Λk −Rf ) +
∑
i∈S

ωc1i εi

)]
.

(A.5)

Note that they only differ in the last term in the parenthesis, the idiosyncratic volatilities.
Denote A ≡ Rf +

∑K
k=1

∑N
i=1 ωiβik (Λk − Rf ) and B ≡

∑N
i=1 ωiεi (or

∑
i∈S ω

c1
i εi). For any
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well-behaved utility function U , because E[B]=0, we have:

E[U(A+B)] ≈ E

[
U(A) + U ′(A)B +

1

2
U ′′(A)B2

]
= E[U(A)] +

1

2
E[U ′′(A)]Var[B2] (A.6)

by second-order Taylor expansion around B=0. Since E[U(W )] and E[U(W c1)] differs only
through the idiosyncratic volatility term, B, we have:

E[U(W )]− E[U(W c)] ≤ E[U(W )]− E[U(W c1)]

≈ 1

2
E[U ′′(A)]

(
Var

(
N∑
i=1

ωiεi

)
− Var

(∑
i∈S

ωc1i εi

))
.

(A.7)

When the number of securities, N , is large, suppose further that:

ωi ≈
1

N
, ωc1i ≈

1

N − n
, σ(εi) ≈ σε, (A.8)

where n is the number of securities excluded in S, and σε is the common idiosyncratic
volatility for all securities. We have:

E[U(W )]− E[U(W c)] ≤ 1

2
E[U ′′(A)]

(
σ2
ε

N
− σ2

ε

N − n

)
= −1

2
E[U ′′(A)]σ2

ε

(
n

N(N − n)

)
.

(A.9)
When the number of securities excluded in S, n, is small relative to the total number of
securities, N , the utility loss (A.9) is also small.

Finally, we observe that the assumptions in (A.8) are non-critical for our main conclusions
here, and can be relaxed at the expense of simplicity of the mathematical derivation.

A.2 Proof of Proposition 2

Because X and α are jointly normal, we can express αi with the following linear relationship:

αi = µα + ρ
σα
σx

(Xi − µx) + ei, (A.10)

where ei are normal random variables with E[ei] = 0 and Var(ei) = σ2
α(1 − ρ2), and the Xi

and the ei are mutually independent. Ordering securities based on Xi, we have:

α[i:N ] = µα + ρ
σα
σx

(Xi:N − µx) + e[i], (A.11)

where e[i] denotes the particular ei associated with Xi:N . Note that Xi:N on the right-
hand side are the usual order statistics, while α[i:N ] on the left-hand side are the induced
order statistics. Because Xi and ei are independent, the set of Xi:N and the set of e[i] are
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also independent. Therefore, we can calculate the first two moments of α based on the
relationship in (A.11):

E
[
α[i:N ]

]
= µα + ρ

σα
σx

(E[Xi:N ]− µx) + e[i] = µα + ρσαE[Xi:N ], (A.12)

Var
(
α[i:N ]

)
= ρ2

σ2
α

σ2
x

Var (Xi:N) + σ2
α(1− ρ2) = σ2

α

(
1− ρ2 + ρ2Var (Xi:N)

)
, (A.13)

Cov
(
α[i:N ], α[j:N ]

)
= Cov

(
ρ
σα
σx
Xi:N , ρ

σα
σx
Xj:N

)
= σ2

αρ
2Cov (Xi:N , Xj:N) . (A.14)

See also David and Nagaraja (2004, Section 6.8).

A.3 Proof of Proposition 3

We first observe that Ui:N ≡ Φ(Xi:N) maps the i-th normal order statistics to the i-th order
statistics from a uniform distribution on [0, 1], where Φ is the cumulative distribution function
of standard normal random variables. We define Q ≡ Φ−1 and write Xi:N = Q(Ui:N). We
then expand Q(Ui:N) in a Taylor series around the expected value of Q(Ui:N):

E[Q(Ui:N)] =
i

n+ 1
= pi, (A.15)

which gives:

Xi:N = Q(Ui:N) = Q(pi)+(Ui:N − pi)Q′(pi)+
1

2
(Ui:N − pi)2Q′′(pi)+

1

6
(Ui:N − pi)3Q′′′(pi)+· · · .

(A.16)
Substituting (A.16) into the definition of E [Xi:N ], Var (Xi:N), and Cov (Xi:N , Xj:N), and
rearranging the terms lead to (11)-(13) in Proposition 3. See also David and Nagaraja
(2004, Section 4.6).

In particular, for standard normal random variables we have Q′(pi) = 1/φ(Q) where φ is
the density function for standard normal random variables. Therefore we can calculate:

Q′′(pi) =
d (1/φ(Q))

dΦ(Q)
=
d (1/φ(Q))

dQ

dQ

dΦ(Q)
=

Q

φ2(Q)
, (A.17)

Q′′′(pi) =
1 + 2Q2

φ3(Q)
, (A.18)

Q′′′′(pi) =
Q(7 + 6Q2)

φ4(Q)
, (A.19)

which completes the proof for (14)-(17).
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A.4 Proof of Proposition 4

Because X and α are both normally distributed, we observe that Xi−µx
σx

and αi−µα
σα

both
follow the standard normal distribution. Therefore,

E

[
Xi:N − µx

σx

]
= E

[
αi:N − µα

σα

]
, (A.20)

Var

(
Xi:N − µx

σx

)
= Var

(
αi:N − µα

σα

)
, (A.21)

Cov

(
Xi:N − µx

σx
,
Xj:N − µx

σx

)
= Var

(
αi:N − µα

σα
,
αj:N − µα

σα

)
. (A.22)

We have assumed, without loss of generality, that µα = µx = 0 and σx = 1, which leads to:

E[Xi:N ] =
E[αi:N ]

σα
, (A.23)

Var (Xi:N) =
Var (αi:N)

σ2
α

, (A.24)

Cov (Xi:N , Xj:N) =
Cov (αi:N , αj:N)

σ2
α

. (A.25)

This together with (8)-(10) gives:

µi = E
[
α[i:N ]

]
= ρσαE [Xi:N ] = ρE[αi:N ]. (A.26)

σ2
i − σ2

α = σ2
αρ

2 [Var (Xi:N)− 1] = ρ2
[
Var (αi:N)− σ2

α

]
, (A.27)

σij ≡ Cov
(
α[i:N ], α[j:N ]

)
= σ2

αρ
2Cov (Xi:N , Xj:N) = ρ2Cov (αi:N , αj:N) . (A.28)

A.5 Proof of Proposition 5

This proposition follows from Yang (1977). See also Lo and MacKinlay (1990) for an appli-
cation in a different context.

A.6 Proof of Proposition 6

This follows from Proposition 5 by observing that Φ(ξk) = Fx(ξkσx+µx). Alternatively, this
result can be proved by taking the limit as N → ∞ based on the finite-sample results in
Proposition 2-3.
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A.7 Proof of Proposition 7

For simplicity, we define λ ≡ [λ1 · · · λN ]T , and observe that X and λ can be rewritten as:

X = µx1 + CxNx

λ = µλ1 + CλNλ

(A.29)

where 1 ≡ [ 1 · · · 1 ]T is a column vector of ones with size N , Nx and Ny are both N -
dimensional standard normal random vectors with Cov (Nx,Ny) = Σ, and Cx and Cy are
both N ×N deterministic matrices. The specification in (A.29) completely characterizes the
joint distribution of X and λ. In light of the parameterization in Assumption (A2), we have
(see also Wu (2021)):

Cx =
√

1− ρxσxI +
(√

1 + (N − 1)ρx −
√

1− ρx
)
σxL

Cλ =
√

1− ρλσλI +
(√

1 + (N − 1)ρλ −
√

1− ρλ
)
σλL

Σ =
ρxλ − ρ̃xλ√

(1− ρx)(1− ρλ)
I +

(
ρxλ + (n− 1)ρ̃xλ√

(1 + (n− 1)ρx)(1 + (n− 1)ρλ)
− ρxλ − ρ̃xλ√

(1− ρx)(1− ρλ)

)
L

(A.30)

where I is the identity matrix and L ≡ 1·1T
N

is a matrix whose elements are all 1/N .
We now define a projection matrix:

P ≡
(
CλΣ

TCT
x

) (
CxC

T
x

)−1
= ρadj

σλ
σx︸ ︷︷ ︸
a

I +

(
ρxλ + (n− 1)ρ̃xλ

1 + (n− 1)ρx
− ρadj

)
σλ
σx︸ ︷︷ ︸

b

L

= aI + bL

(A.31)

and it is easy to show that:
λ−PX ⊥ X. (A.32)

Therefore, when assuming µx = 0 and σx = 1, we have:

E
[
λ[i:N ]

]
= E

[
(λ−PX)[i:N ]

]
+ E

[
(PX)[i:N ]

]
= µλ − (a+ b)µx + aE [Xi:N ] + bµx

= µλ + ρadjσλE [Xi:N ] ,

(A.33)

which proves (30). The variances and covariances in (31)-(32) can be proven similarly fol-
lowing the same decomposition in (A.33). See also Lee and Viana (1999) and Wu (2021).
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A.8 Proof of Proposition 8

The expected excess return follows directly from the distribution of alphas for single securities
in Proposition 2. The variance also follows by rearranging terms:

Var (α̃) =
∑
i∈P

ω2
i σ

2
i + 2

∑
i<j∈P

ωiωjσij

=σ2
α

(
1− ρ2 + ρ2

∑
i∈P

ω2
i Var (Xi:N) + 2ρ2

∑
i<j∈P

ωiωjCov (Xi:N , Xj:N)

)

=σ2
α

(
1− ρ2 + ρ2

(∑
i∈P

ω2
i Var (Xi:N) + 2

∑
i<j∈P

ωiωjCov (Xi:N , Xj:N)

))
.

(A.34)

A.9 Proof of Proposition 9

Because of the decomposition in (40), and the fact that ζi are independent of εi, the combined
idiosyncratic variance for security i is simply σ2

i + σ(εi)
2, where σ2

i is the variance of the i-
th induced order statistic given in (9), and σ(εi)

2 is the original idiosyncratic variance for
security i given in (1). The classical result of Treynor and Black (1973) maintains that to
maximize the Sharpe ratio of the portfolio, security weights should be proportional to the
expected excess returns divided by the idiosyncratic variance, which proves (41).

(42) follows from plugging in results from Proposition 6 into (41).

A.10 Proof of Proposition 10

By definitions in (43)-(44), the return of the impact portfolio in excess of the risk-free rate
can be written as:

RA −Rf = αA + βA(Rm −Rf ) + εA. (A.35)

When combining with the passive market portfolio, the weight of the impact portfolio, ωA,
is given in (46). Therefore, the return of the combined portfolio, in excess of the risk-free
rate, is

RP −Rf = ωA(RA −Rf ) + (1− ωA)(Rm −Rf )

= ωA (αA + βA(Rm −Rf ) + εA) + (1− ωA)(Rm −Rf )

= ωAαA + (Rm −Rf )(βAωA + (1− ωA)) + ωAεA,

(A.36)

which completes the proof of (47). (48) and (49) follow directly from simple calculations of
the expected value and variance of RP based on (A.36).
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A.11 Proof of Proposition 11

Based on the price process, (53), the investor’s objective, (51), can be written as:

E[PT ] = E[PT−1 + θSzT + γFT + εT ]

= E[PT−2 + θSzT−1 + γFT−1 + εT−1 + θSzT + γFT + εT ]

= P0 + θ(Sz1 + · · ·+ SzT ) + γ(F1 + δF1 + · · ·+ δT−1F1]

= P0 + θ(Sz1 + · · ·+ SzT ) +
γ(1− δT )F1

1− δ
.

(A.37)

Maximizing E[PT ] over S1, S2, . . . , ST is the same as maximizing the middle term in (A.37):

(Sz1 + · · ·+ SzT ). (A.38)

When z = 1, it does not matter how trades are allocated because (A.38) is always equal
to S̄. When 0 < z < 1, (A.38) is a concave function with respect to S1, S2, . . . , ST , and is
maximized when S1 =S2 = · · ·=ST = S̄/T , which completes the proof of the optimal strategy,
(54).

The optimal profit is simply the total value of the position subtracted by the average
execution cost:

V ∗ = E[PT ] · S̄ − E

[
T∑
t=1

PtSt

]
=

(
E[PT ]− 1

T

T∑
t=1

E[Pt]

)
S̄. (A.39)

Based on a similar derivation to (A.37), it is easy to show that

E[Pt] = P0 + θ(Sz1 + · · ·+ Szt ) +
γ(1− δt)F1

1− δ
= P0 + θt

S̄z

T z
+
γ(1− δt)F1

1− δ
, (A.40)
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for t = 1, 2, . . . , T . Substituting (A.40) into (A.39), we have

V ∗ =

(
E[PT ]− 1

T

T∑
t=1

E[Pt]

)
S̄

=

(
P0 + θT

S̄z

T z
+
γ(1− δT )F1

1− δ
− 1

T

T∑
t=1

(
P0 + θt

S̄z

T z
+
γ(1− δt)F1

1− δ

))
S̄

=

(
θT

S̄z

T z
+
γ(1− δT )F1

1− δ
− 1

T

T∑
t=1

(
θt
S̄z

T z
+
γ(1− δt)F1

1− δ

))
S̄

=

(
θ
S̄z

T z

(
T − 1

T

T∑
t=1

t

)
+

γF1

1− δ

(
(1− δT )− 1

T

T∑
t=1

(1− δt)

))
S̄

=

(
θ
S̄z

T z

(
T − 1 + T

2

)
+

γF1

1− δ

(
1

T

T∑
t=1

δt − δT
))

S̄

=

(
θ
S̄z

T z

(
T − 1

2

)
+
γδF1

1− δ

(
1− δT

T (1− δ)
− δT−1

))
S̄

=

(
θS̄z(T − 1)

2T z
+
γδF1

(
1− TδT−1 + (T − 1)δT

)
(1− δ)2T

)
S̄

(A.41)

which completes the proof of (55).
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Pástor, L., R. F. Stambaugh, and L. A. Taylor, 2021b, Sustainable investing in equilibrium,
Journal of Financial Economics 142, 550–571.

Pedersen, L. H., S. Fitzgibbons, and L. Pomorski, 2021, Responsible investing: The ESG-
efficient frontier, Journal of Financial Economics .

Raponi, V., C. Robotti, and P. Zaffaroni, 2020, Testing beta-pricing models using large
cross-sections, The Review of Financial Studies 33, 2796–2842.

Renneboog, L., J. Ter Horst, and C. Zhang, 2008, Socially responsible investments: Insti-
tutional aspects, performance, and investor behavior, Journal of banking & finance 32,
1723–1742.

Ross, S., 1976, The arbitrage theory of capital asset pricing, Journal of Economic Theory
13, 341–360.

Salzman, R., 2016, Venture philanthropy and gene therapy: lessons from adrenoleukodys-
trophy, Human gene therapy 27, 14–18.

66



Scaife, W., 2008, Venturing into venture philanthropy: Is more sustainable health and med-
ical research funding possible through venture philanthropy and social entrepreneurship?,
Journal of Nonprofit & Public Sector Marketing 20, 245–260.

Scott, J., 2009, The politics of venture philanthropy in charter school policy and advocacy,
Educational Policy 23, 106–136.

Semenova, N., and L. G. Hassel, 2015, On the validity of environmental performance metrics,
Journal of Business Ethics 132, 249–258.

Shanken, J., 1992, On the estimation of beta-pricing models, The Review of Financial Studies
5, 1–33.

Sharp, P., and S. Hockfield, 2017, Convergence: The future of health, Science 355, 589–589.

Sharpe, W., 1964, Capital asset prices: A theory of market equilibrium under conditions of
risk, The Journal of Finance 19, 425–442.

Sharpe, W. F., 1966, Mutual fund performance, The Journal of Business 39, 119–138.

Shiller, R. J., 2005, Irrational Exuberance, second edition (Princeton University Press,
Princeton, New Jersey).

Shing, E., 2021, Does sustainable investing have to cost performance?, BNP
Paribas Wealth Management, https://ifa.bnpparibas.com/asia/en/expert-voices/
sustainable-investing-and-performance.html, accessed on August 2, 2021.

Sorensen, E., M. Chen, and G. Mussalli, 2021, The quantitative approach for sustainable
investing, The Journal of Portfolio Management .

Sortino, F. A., and L. N. Price, 1994, Performance measurement in a downside risk frame-
work, the Journal of Investing 3, 59–64.

Sortino, F. A., and R. Van Der Meer, 1991, Downside risk, Journal of portfolio Management
17, 27.

Statman, M., and D. Glushkov, 2009, The wages of social responsibility, Financial Analysts
Journal 65, 33–46.

Stroebel, J., and J. Wurgler, 2021, What do you think about climate finance?, Journal of
Financial Economics 142, 487–498.

Thakor, R. T., N. Anaya, Y. Zhang, C. Vilanilam, K. W. Siah, C. H. Wong, and A. W. Lo,
2017, Just how good an investment is the biopharmaceutical sector?, Nature Biotechnology
35, 1149–1157.

Treynor, J. L., and F. Black, 1973, How to use security analysis to improve portfolio selection,
The journal of Business 46, 66–86.

67



Umar, Z., M. Gubareva, I. Yousaf, and S. Ali, 2021, A tale of company fundamentals vs
sentiment driven pricing: The case of gamestop, Journal of Behavioral and Experimental
Finance 30, 100501.

Van Slyke, D. M., and H. K. Newman, 2006, Venture philanthropy and social entrepreneur-
ship in community redevelopment, Nonprofit Management and Leadership 16, 345–368.

Wu, L., 2021, Distribution of induced order statistics for correlated random variables, Tech-
nical report, Peking University.

Xiong, J. X., 2021, The impact of ESG risk on stocks, The Journal of Impact and ESG
Investing 1.

Yang, S.-S., 1977, General distribution theory of the concomitants of order statistics, The
Annals of Statistics 996–1002.

Yogo, M., 2006, A consumption-based explanation of expected stock returns, The Journal
of Finance 61, 539–580.

Zerbib, O. D., 2020, A sustainable capital asset pricing model (S-CAPM): Evidence from
green investing and sin stock exclusion, Available at SSRN 3455090.

68


	Introduction
	Literature Review
	The Framework
	The No-Impact Baseline Case
	Impact Factors and Induced Order Statistics
	Defining an Impact Portfolio

	Characterizing Excess Returns
	Finite-Sample Distribution
	Comparison with Conventional Order Statistics
	Asymptotic Distribution
	Interpreting Excess Return as Omitted Factors

	Impact Portfolio Construction
	Properties of Arbitrary Impact Portfolios
	Estimation of Lg.
	Treynor-Black Portfolios
	Combining Impact and Passive Portfolios

	Applications to Four Impact Investments
	Venture Philanthropy: The Cystic Fibrosis Foundation
	Divesting Sin Stocks
	ESG Investing
	The GameStop Phenomenon

	Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11


