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Abstract 

We investigate the impact of inventory pressures on market makers' decisions in the equity 

options market, particularly concerning price improvements and participation in price 

improvement auctions. We also examine the cross-market effects of inventory pressures from 

other venues and their impact on local exchange dynamics. Our findings show that higher order 

imbalances lead to reduced price improvements, as market makers are concerned about rising 

inventory risks. However, when competition is characterized by uniform order flows across 

multiple venues in an auction setting, market makers with higher inventory imbalances tend to 

provide higher price improvements in auctions. The probability of auctions increases during 

periods of less correlated orders, which contribute minimally to inventory risks. Furthermore, 

market makers significantly reduce price improvements for short-maturity, deep out-of-the-

money options due to the higher adverse selection risks they pose. This study highlights the role 

of inventory management in market makers’ strategic decision-making and the importance of 

cross-market interactions in fragmented markets. 
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Price Improvement, Auctions and Order Imbalance in the Options 

Market 

1.0  Introduction 

In intermediated markets like the options market, the concept of order imbalance among 

intermediaries over specific intervals is relevant (Chordia and Subrahmanyam, 2004). Options 

market makers (MMs) intermediate both retail and institutional order flow, using their capital to 

provide liquidity, facilitate price discovery, and accommodate trading imbalances. In doing so, 

they sometimes bear unwanted inventories to maintain a fair and orderly options market. Despite 

MMs’ affirmative obligations to quote two-sided markets, they are not obligated to sell or buy an 

unlimited number of contracts in a specific option series (Bollen and Whaley, 2004). And in a 

fragmented and competitive options market, MMs can selectively execute trades that positively 

impact their inventory positions, leading to a more efficient risk allocation (Daures and Moinas, 

2022). As a result, MMs continuously monitor their portfolio positions, and assess the inventory 

and adverse selection risk that might be associated with incoming orders to decide how to 

interact with them. For instance, designated market makers (DMMs) can internalize customer 

orders through price improvement auctions (PIA) or internalize orders for five or fewer contracts 

through the simple limit order book.1 2 They can also offer price improvements using hidden 

 
1DMMs are specialized market makers with stricter obligations and special privileges in a randomly exchange-
assigned options security. According to Ernst and Spatt (2024), most US options exchange have them. 
2Some exchange trading and priority rules provide two methods for DMMs to internalize retail orders: price 
improvement auctions and limit orders for five contracts or less if the DMM is quoting at the National Best Bid and 
Offer (NBBO). Also, institutional broker-dealers can utilize price improvement auctions to pursue better pricing for 
their institutional clients' orders. Certain exchanges have designed auctions specifically for large orders, incorporating 
an "all-or-none" feature.  



orders in the limit order book or route incoming orders to other markets for execution.3 According 

to Jameson and Wilhelm (1992), the primary challenges MMs face in managing inventory risk 

include the need for continuous rebalancing of option positions and the unpredictability of the 

return volatility of the underlying stock.  

This study investigates how supply and demand dynamics in equity options influence price 

improvements and auction trades through changes in MMs’ inventory positions. We explore 

several hypotheses to assess whether the endogenous decision of MMs to internalize retail orders 

in PIAs and the level of price improvement are influenced by inventory pressures or order 

imbalances. Muravyev (2016) suggests that large order imbalances lead to significant price 

movements, with the inventory component of price impact being larger than the informational 

component. Daures and Moinas (2022) suggest that MMs adjust their quoting strategies based 

on the extent of order imbalances they face across different venues. The inventory model 

proposed by Bauldauf et al. (2024) suggests that inventory pressures can influence MMs' 

decisions to siphon and execute retails orders off-exchange. Bollen and Whaley (2004) argue that 

MMs respond to temporary inventory pressures by adjusting option prices. We investigate how 

MMs' order imbalances affect option price improvements both broadly and within PIAs. We also 

assess how these imbalances influence MMs' decisions to participate in option auctions. 

Our study is relevant given the recent growth in retail options trading, which raises 

important questions for regulators and academics, particularly concerning the welfare of public 

customers. A key consideration in this context is the role of MMs and/or DMMs (formerly 

 
3 Exchanges also have price improvement orders. Price improvement orders are hidden limit orders within the limit 
order book, placed inside the NBBO spread. They can increase in 1-cent increments, regardless of the option series 
tick size. See https://www.sec.gov/files/rules/proposed/2022/34-96496.pdf 



specialists). Given the often one-sided nature of retail order flows, growth in options retail 

trading—particularly those demanding liquidity—can lead to higher inventory costs and 

imbalances for MMs. Some studies suggest that the inventory risk faced by MMs in the options 

market has a “first order effect” on option spreads and prices, as MMs find it challenging to 

manage inventory risk by promptly liquidating their inventories (Battalio et al. (2016); Muravyev 

(2016)). This emphasizes the importance of MMs’ ability to quickly adjust orders based on 

updated market valuations and adequately manage their inventories, as this is essential for price 

discovery and reducing transaction costs.  

Since retail customer orders are often smaller, less correlated, and generate less adverse 

selection (i.e., they are less informed), their execution quality is usually enhanced through 

execution at narrower spreads (Easley et al. (1996);  Battalio and Holden (2001); Bauldauf et al. 

(2024)). The options PIA mechanism provided by some exchanges offers better execution prices 

for customer orders by allowing MMs to internalize these orders at narrower spreads than the 

National Best Bid and Offer (NBBO) spread, or at worst, at the NBBO spread. And given that 

wholesalers handle almost all retail options order flows and tend to route more orders to their 

affiliated MMs, PIA might be part of a portfolio-based inventory management strategy for these 

MMs.4 The model by Bauldauf et al. (2024) suggest that the inventory hedging benefits provided 

by retail orders should contribute to MMs' endogenous decisions to offer price improvements. 

 
4Hendershott et al. (2023) argues that wholesalers tend to route more orders to their affiliated DMMs. According to 
the Rule 606 filings for the top 15 retail brokers for listed options, on average, non-directed orders made up around 
99.13% of all retail orders in Q1 of 2022.   
See https://www.sec.gov/files/rules/proposed/2022/34-96496.pdf 



This means that asymmetric information alone cannot fully explain the endogenous decision by 

options MMs to provide price improvement to retail orders in auctions or limit order books. 

Bryzgalova et al. (2023) and  Ernst and Spatt (2024) argue that the vast majority of retail 

order flow in listed options is internalized on exchanges through single-leg PIA mechanisms. 

However, leveraging Cboe options trade data related to retail platform trading, Han (2024) finds 

a significant presence of retail trading in the multi-leg complex options market. Han’s findings 

suggest that focusing on single-leg auction trades as a proxy for retail trading or assuming that 

retail investors only participate in single-leg trading is misleading. This narrow focus can result in 

inaccurate conclusions about retail trading in the options market, as it fails to capture the 

multifaceted retail options trading landscape. Therefore, in our investigation to understand the 

effects of MMs’ inventory pressures on the dynamics of price improvements and PIAs, we use 

both single-leg and multi-leg equity options trades.5 We then estimate the implied trade 

directions using the Lee and Ready (1991) tick-test (LRTT) algorithm. In addition to the LRTT 

algorithm, we utilize a procedure described in Section 3.2 of this paper to slightly improve 

classification accuracy of single-leg PIA trades. We also compute various measures of options risk 

exposure, such as vega and gamma. 

The main independent variable in our empirical investigation is individual net order 

imbalance, which reflects inventory pressures on a specific exchange within a fixed interval. 

Following Bollen and Whaley (2004), we define individual net order imbalance as the aggregate 

 
5A multi-leg or complex order is a single order for two or more different options series (referred to as "legs") 
simultaneously, ensuring execution within a specified net price and ratio if filled. The net prices achieved are typically 
better than those obtained by trading the component legs separately. In contrast, single-leg or simple orders involve 
only one series, such as buying or selling calls or puts 



signed volume of option contract trades within a fixed time interval, but we adjust this measure 

to dollar terms to reflect the financial exposure of MMs. While Bollen and Whaley use aggregate 

daily data, our research focuses on intraday data. Consistent with previous empirical works on 

intraday options trading volume (see Easley et al. (1998) and Stephan and Whaley (1990)), we 

use 5-minute intervals. Given the interconnected liquidity and competition across options 

exchanges, we also investigate cross-market effects of order imbalance on price improvements. 

We estimate two additional measures: “other-venues-order-imbalance”, which captures 

inventory pressures on other venues, and SAME, which indicates whether the direction of order 

flow on one venue is the same as the net direction of order flow across other venues within the 

same 5-minute interval. These additional measures are necessary as Daures and Moinas (2022) 

argue that the market-making behaviors of MMs in one venue is influenced by activities on other 

venues. They emphasize that the interaction between direction of order flows—whether identical 

or divergent across venues— and MM’s order imbalance influences their liquidity supply across 

multiple venues. Higher inventory imbalance typically leads to tighter spreads in the presence of 

uniform directional shocks, as MMs consider their actions in one venue in relation to their costs 

in other venues. When the direction of order flows across venues is uniform, competition 

intensifies, leading MMs to narrow their spreads to avoid being undercut. Conversely, when the 

direction of order flow is not uniform, competition is less intense, allowing MMs to selectively 

manage their inventory by focusing on venues where liquidity provision is most beneficial. Using 

data from Euronext, Daures and Moinas (2022) find that the direction of order flows across 

venues and the inventory divergence of MMs significantly influence local liquidity and MMs’ 

market-making strategies. They suggest that when competition is high, indicated by uniform 



order flows across multiple venues,  MMs with higher inventory imbalance tend to be more 

aggressive in their liquidity supply to manage inventory risks. Their findings underscore the 

importance of considering cross-market interactions when examining price improvement in 

fragmented markets. 

Our empirical results show that MMs' order imbalances significantly reduce the level of 

price improvement in the options market. This occurs because MMs, concerned about rising 

inventory risks due to higher imbalances, tend to execute trades at effective spreads closer to the 

quoted spreads, offering less price improvement as compensation for the increased inventory risk 

or as a deterrent to order flow. Additionally, our findings on cross-market effects suggest that 

inventory pressures from other venues influence the dynamics of the local exchange. When there 

is inventory pressure on other exchanges and order flows are uniform across multiple venues, 

MMs with higher inventory imbalances might offer lower price improvements to minimize their 

exposure to adverse selection. However, when competition intensifies, as indicated by uniform 

order flows across multiple venues and a competitive PIA environment, MMs with higher 

inventory imbalances are more likely to provide higher price improvements to better manage 

inventory risks. Our findings also indicate that the probability of auctions increases during periods 

of less correlated orders, as these contribute minimally to inventory risks, a finding consistent 

with Bauldauf et al. (2024). 

If order imbalances could predict price improvement and MMs’ participation in PIAs, it 

would be interesting to investigate the role of information proxies like leverage using a moneyness 

measure. The view that out-the-money contracts are leveraged contracts has been entertained 

by many studies that include  Hu (2014) and Pan and Poteshman (2006). If informed traders seek 



leverage through options, they are likely to prefer those that provide the highest leverage. The 

multi-market sequential trade model of Easley et al. (1998) suggests that the amount of 

information in the options market is related to the leverage provided by the stock and options 

markets, as well as the liquidity of both markets. Furthermore, Chakravarty et al. (2004) argue 

that leverage effects are of primary importance relative to liquidity effects in determining the 

information content of option trades. Deep out-of-the-money (DOTM) options with short 

maturities offer the highest leverage, as their prices primarily reflect the attributes of the risk-

neutral jump process rather than the level of diffusive volatility (Andersen et al., 2017). In other 

words, DOTM with short maturities have very low time-value and benefit the most from sudden 

and favorable large price movements. Conversely, long-dated deep in-the-money (DITM) options 

offer the least leverage.  

As anticipated, we find that MMs provide lower price improvements for short-maturity, 

DOTM options compared to long-dated, DITM options due to the higher adverse selection risk 

associated with DOTM with short tenors. OTM options with short maturities tend to attract more 

informed traders seeking high leverage, which may cause MMs to adjust their pricing behavior 

accordingly by offering lesser price improvement due to higher adverse selection risks.  

 The remainder of the paper is organized as follows. Section 2 discusses the hypotheses 

development from related literature. Section 3 describes the data and  variables. Section 4 

describes the empirical methodology and discusses the main empirical results and Section 5 

reports the conclusions of the study. 

 



2. Hypothesis Development 

Retail orders are mostly non-directed orders, meaning that retail brokers/broker-dealers 

decide how these orders are handled or where they are routed for best execution. Some options 

exchanges primarily compete for this order flow by offering liquidity discounts, rebates, quoting 

the best bid/ask prices, and providing depth at these prices. Other exchanges, in addition to these 

methods, also purchase order flows from retail-oriented options firms.6 In contrast, wholesalers 

mainly compete for options retail order flows through payment for order flow (PFOF) 

agreements.7 

Battalio et al. (2021) examine how the pricing models of options exchanges influence retail 

brokers' order routing behavior and the execution quality of nonmarketable orders. They find that 

some retail brokers maximize the value of their order flow by selling marketable orders through 

PFOF agreements and routing nonmarketable orders to exchanges offering substantial liquidity 

rebates. Since wholesalers handle almost all retail options order flow and often route more orders 

to their affiliated DMMs, who may internalize them,  Battalio et al. (2021) findings suggest that 

PFOF exchanges can attract more order flow by selectively diverting less informed marketable 

trades away from primary markets. This selective routing may create an environment with less 

competition, leading to potentially lower overall execution quality for nonmarketable orders. 

While Battalio et al. (2021) finds that PFOF is associated with higher execution quality, 

Hendershott et al. (2023) finds that the non-random routing behaviors of PFOF DMMs is 

 
6 A pricing model where exchanges pay for order flow is found only in the options market. Stock exchanges do not 
have such pricing model.  
7 Since not all retail order flow providers accept PFOF, wholesalers also compete by offering relatively low-cost market 
access and execution services. See https://www.sec.gov/files/rules/proposed/2022/34-96496.pdf 



associated with larger effective spreads in trade executions. Notably, all PFOF exchanges use 

preferencing systems that grant special privileges to DMMs in trade executions, albeit with 

stricter quoting obligations.  

As retail order flows are typically concentrated on one side of the market, an increase in 

retail order flow can lead to higher inventory costs and imbalances for MMs. For instance, Barber 

et al. (2022) finds that retail equity order flows from Robinhood tend to be more concentrated 

than those from other retail brokerages, contributing to momentum-oriented herding that is 

often followed by market reversals. Using brokerage outages as an exogenous shock, Eaton et al. 

(2022) find that Robinhood traders, compared to more sophisticated equity traders on traditional 

brokerages, create order imbalances and inventory risks that worsens market liquidity and 

volatility in equities with high retail interest. In contrast, studies like Han (2024) and Baldauf et al. 

(2024)  suggest that increase in retail participation can mitigate MMs’ inventory imbalance. 

Leveraging Cboe options trade data related to retail platform trading, Han (2024) finds that 

despite increased retail participation in SPX options in recent years, “the monthly MM order 

imbalance has decreased from -14% in December 2016 to -12% in May 2023.” 

The findings from Barber et al. (2022), Eaton et al. (2022), Baldauf et al. (2024) and Han 

(20204) highlight the heterogeneity in intermediation costs of retail order flow through inventory 

imbalances. However, when retail order flow creates inventory imbalance for MMs, the increased 

inventory risks may affect the price improvement of orders. Schwarz et al. (2023)  experimentally 

compares execution quality of equity trades across five brokers and finds that Robinhood equity 

order flows received, on average, price improvements of 2.10 cents and 3.40 cents per share less 

than those from Fidelity and TD Ameritrade, respectively.  



Furthermore, the significance of inventory considerations in determining price 

improvement for orders is also underscored in the models by Baldauf et al. (2024) and Daures 

and Moinas (2022). Bauldauf et al. (2024) show that in a PFOF environment, MMs are more likely 

to siphon retail equity orders off-exchange and execute them at smaller spreads when these 

orders are less correlated than institutional orders. However, when institutional orders pose 

lower inventory risks compared to retail orders, both types of orders are executed on lit 

exchanges. Unlike the stock market, where internalization occurs off-exchange, all trading in the 

options market happens on exchanges, with internalization mostly executed through PIA 

mechanisms (Bryzgalova et al. (2023); Ernst and Spatt (2024)). Applying this to the options market 

where MMs manage inventory risk at the portfolio level, the Bauldauf et al. (2024) model suggests 

that MMs on PFOF exchanges might initiate more PIAs to manage inventory risks arising from 

their broader portfolio of trades. During periods of higher market volatility and lower liquidity, 

MMs may initiate more PIAs to attract order flow for risk management purposes. If retail orders 

are less correlated than institutional orders, MMs are more likely to offer price improvement by 

segmenting them through PIAs. Less correlated orders generally contribute to lower order 

imbalances because their flow directions are not uniformly buys or sells. This implies that price 

improvement might be lower when the order imbalance is higher.  

 Muravyev (2016) finds that higher order imbalances lead to higher option returns due to 

MMs increased inventory risks. MMs require higher expected returns as compensation for taking 

on more inventory risk. This suggests that MMs are less likely to offer higher price improvement 

during periods of higher order imbalance, as such imbalances increase inventory risks.  



Ernst and Spatt (2024) find that execution quality of options trade is lower when a PFOF-

paying DMM is involved as customer orders receive less price improvement and worse prices. In 

contrast, Hendershott et al. (2023) suggest that competition in a PFOF environment can result in 

a positive relationship between price improvement and MMs’ order imbalance. Their findings 

suggest that MMs on PFOF-DMMP exchanges may improve their price improvement in auctions 

to maintain or enhance their order flow from retail brokers, particularly when their execution 

quality has previously been poor relative to competitors. This suggests that, even during periods 

of relatively high order imbalance, the need to remain competitive in terms of execution quality 

can lead to higher price improvements in PFOF auctions. 

Daures and Moinas (2022) explore how MMs often implement strategies across several 

exchanges simultaneously to predict how liquidity provision by MMs in one trading venue is 

influenced by trade conditions on other venues. They emphasize that the interaction between 

direction of order flows—whether identical or divergent across venues— and MM’s order 

imbalance influences their liquidity supply across multiple venues. Using data from Euronext, 

Daures and Moinas (2022) suggest that when competition is high, indicated by uniform order 

flows across multiple venues, MMs with higher inventory imbalance tend to be more aggressive 

in their liquidity supply to manage inventory risks. That is, contrary to adverse selection 

hypothesis, the presence of same-sign order flows across venues does not negatively impact 

liquidity. Adverse selection hypothesis suggests that the presence of same-sign order flows across 

multiple venues would influence MMs to reduce their liquidity provision across all venues and 

offer less price improvement.  

The studies discussed above motivate the following hypotheses: 



Hypothesis 1: MMs will provide lower price improvement during periods of higher order 

imbalance, as higher order imbalances increase inventory risks. This effect is likely more 

pronounced on PFOF-DMMP exchanges. Muravyev (2016) finds that higher order imbalances lead 

to higher option returns due to MMs increased inventory risks. MMs require higher expected 

returns as compensation for taking on more inventory risk. Ernst and Spatt (2024) find that 

execution quality of options trade is lower when a PFOF-paying DMM is involved, as customer 

orders receive less price improvement and worse prices. Higher order imbalance will likely worsen 

this effect, as MMs facing increased inventory pressures may further reduce the level of price 

improvement they provide to mitigate potential losses.  

Hypothesis 2: In a PFOF setting, MMs will initiate more PIAs and provide higher levels of 

price improvement when orders are smaller and less correlated. Modeling retail orders as smaller 

and less correlated, Bauldauf et al. (2024) suggests that price improvement for retail orders might 

be higher when the order imbalance is lower, i.e., when they are less correlated. This implies that 

a negative relationship exists between likelihood of auctions and order imbalance. When orders 

contribute less to inventory risks, Bauldauf et al. (2024) suggests that MMs on PFOF exchanges 

might initiate more PIAs to manage inventory risks arising from their broader portfolio of trades. 

Hypothesis 3: In auctions, PFOF-DMMs will provide higher levels of price improvement, 

even during periods of higher order imbalance, due to the competitive pressure to maintain or 

enhance execution quality. Hendershott et al. (2024) finds that PFOF-DMMP exchanges provide 

higher price improvement in auction trades compared to non-PFOF-DMMP. 

Hypothesis 4: When competition is intense, as indicated by uniform order flows across 

multiple venues, MMs with higher inventory imbalances will provide higher price improvement 



to manage inventory risks. Daures and Moinas (2022) suggest that when order flows are uniform 

across venues, the cross-market cost linkage can lead to increased marginal costs of liquidity 

provision. Consequently, the interaction between a MM's inventory imbalance and same-sign 

order flows across venues may drive more competitive pricing. 

The multi-market sequential trade model of Easley et al. (1998) suggests that the amount 

of information in the options market is related to the leverage provided by the stock and options 

markets, as well as the liquidity of both markets. Chakravarty et al. (2004) argue that leverage 

effects are of primary importance relative to liquidity effects in determining the information 

content of option trades. This is particularly evident in short-maturity options, as Andersen et al. 

(2017) demonstrates in their study on S&P 500 index options. Andersen et al. (2017) finds that 

the pricing of short-maturity ("weeklies") options can identify periods of higher concerns about 

negative tail events, which are not always reflected by standard volatility measures. DOTM 

options with short maturities are less sensitive to broader economic shifts and offer the highest 

leverage, as their prices primarily reflect the attributes of the risk-neutral jump process rather 

than the level of diffusive volatility (Andersen et al., 2017). In other words, DOTM with short 

tenors have low time-value and benefit the most from sudden, significant and favorable price 

movements. Conversely, long-dated DITM options offer the least leverage and are less sensitive 

to sudden market changes. Therefore: 

Hypothesis 5: MMs will provide lower price improvements for short-maturity, DOTM 

options compared to long-dated, DITM options due to the higher adverse selection risk associated 

with DOTM with short tenors. The significant leverage and sensitivity to immediate market risks 



associated with DOTM options with short maturities make them more likely to be informed 

trades, potentially signaling jump risks or other sudden market movements. 

 

 

3.  Data and Empirical Methodology 

3.1   Data Sample 

We obtain options series quote and trade data on U.S. listed stocks, ETFs and Indices for 

the month of October 2022 from OPRA LiveVol provided by CBOE. The data include the exchange 

where the trade was executed, trade quantity, execution price, trade mechanism, prevailing 

quoted spread for the options series and underlying asset, implied volatility and option delta at 

the time of trade, and the date and timestamp of the trade. Our analysis focuses on trade 

mechanism flags of “SingLegAuctNonISO", "MultLegAuct", "AutoExecution", and 

"MultLegAutoEx" on common-stock options with the underlying stock incorporated in the United 

States.8 For the rest of the paper, we refer to SingLegAuctNonISO trades as SLAN, “MultLegAuct” 

trades as MLAN, “AutoExecution” trades as AutoEx and “MultLegAutoEx" trades as MLAutoEx.9 

We eliminate trades with locked or crossed quotes, trades with zero implied volatility, and trades 

within five minutes of market open and close (i.e., only including trades from 9:35 a.m. to 3:55 

 
8 We use CRSP to eliminate trades in ETF options, index options, and options on American Depositary Receipts (ADRs), 

Real Estate Investment Trusts (REITs), closed-end funds and foreign firms. 
9The “AutoExecution” and “MultLegAutoEx" flags represents single-leg and multi-leg electronic trade executions, 

respectively. The “SingLegAuctNonISO" (“MultLegAuct") flag indicates the execution of single-leg-non-ISO (multi-leg) 

electronic orders traded in a two-sided auction mechanism that goes through an exposure period within a simple 

(complex) options market 



p.m.).10 Data on the daily trading volume of the underlying stock and the market capitalization of 

the underlying stock are from CRSP.11 Furthermore, to be included in the sample, the option series 

must have a daily trading volume of 10 or more contracts. The initial sample contains over 115 

million trades and 900 million contracts. After applying the filters, we are left with approximately 

37 million trades. Table 1 presents the summary of the filtered data. 

 

[INSERT TABLE 1] 

The average trade size is 5.27. Most trades have a small size and low price, with median 

values of 1 contract and $2.38, respectively. The data also show that most options traded have 

low implied volatility and short days to expiry, with a median of 10 days. Price improvement is 

generally small, indicating a small difference between quoted and effective spreads.  

Table 2 provides an overview of the pricing models, auction types, and contract volumes 

across various U.S. options exchanges for the sample period of October 2022. It categorizes 

exchanges by whether they use PFOF, maker-taker (MT), or taker-maker (TM) pricing models. The 

table also indicates which exchanges offer single-leg or multi-leg auction mechanisms and 

whether they use DMM preferencing. The data show a wide variation in trading volumes and the 

prevalence of different auction mechanisms, with some exchanges, like Nasdaq PHLX, handling a 

significant portion of trades through their auction mechanisms. 

 
10 We eliminate observations where the best bid in the option series at the time of trade (NBB) is greater than or 

equal to the best offer at the time of trade (NBO). According to CBOE LiveVol specifications, “implied volatility (IV) 

will be zero in cases where the calculation model did not have sufficient input data (i.e. no quoted markets), the option 

price was below intrinsic value, or the implied volatility exceeded the acceptable upper limit.” Thus, we eliminated 

trades with IV equal to zero. 
11Market capitalization is the product of the outstanding shares of the stock and the closing price. The closing price 

and shares outstanding data are from CRSP. 



 

[INSERT TABLE 2] 

 

Table 3 compares price improvement and EQ ratios across different trade mechanisms—

SLAN, MLAN, AutoEx, and MLAutoEx. The table highlights how different exchanges and trade 

mechanisms impact execution quality, with auction trades generally showing better execution 

quality compared to non-auction mechanisms.  

 

[INSERT TABLE 3] 

Table 4 presents a difference-in-means analysis of price improvement across binary 

regressors. This table analyzes how various factors, such as auction participation and DMM 

preferencing, affect execution quality. The results indicate that trades involving auction 

mechanisms, particularly multi-leg auctions, generally receive higher price improvements, while 

trades on exchanges with PFOF and DMM preferencing systems receive lower price 

improvements. This suggests that while auctions can enhance price improvement, the structure 

of market-making and preferencing systems on some exchanges might dilute these benefits. 

 

[INSERT TABLE 4] 

 

3.2   Improving Lee and Ready Tick Test Classification Scheme for SLAN Trades. 

The LRTT procedure has been widely used in many empirical studies (Chan et al. (2002); Chordia 

and Subrahmanyam (2004); Easley et al. (1998); Hendershott et al. (2023); Pan and Poteshman 



(2006); Hu (2014) and much more) to infer the direction of stock and option trades. The 

procedure first classifies trades based on the position of the trade price relative to the midpoint 

of the prevailing bid-ask spread. Trades above (below) the midpoint are classified as buys (sells). 

For trades at the quote midpoint, the tick-test procedure compares the price of the current trade 

to that of the last trade at a different price, classifying trades on an uptick or zero-uptick (downtick 

or zero-downtick) as buys (sells). However, with SLAN trades, the LRTT procedure can sometimes 

inconsistently classify trades within the same auction session. Table 5 illustrates this. The table 

shows that some trades within the same electronic auction session are classified differently – as 

buys, sells and mid – by the LRTT procedure. In electronic auction mechanisms, public customer 

orders are submitted with a contra-side agency or principal order. Since only one auction session 

can be active at a time in a particular option series, it is unlikely for both buyer-initiated and seller-

initiated trades to exist within the same single-leg electronic auction session. Additionally, each 

executed quote in OPRA data has a separate print regardless of trade mechanism. Consequently, 

in a PIA with multiple participants (or executed quotes), there will be multiple trade observations 

in the option series with the same timestamp. This occurs even if the quotes are submitted at 

different points within the typical 100-millisecond duration of the auction session. These trades 

may have the same or different prices and potentially the same or different sizes.  

 

[INSERT TABLE 5] 

 



 Combining this knowledge in our classification sequence for SLAN trades, we implement 

the following approach, assuming that trades with the best price in an exchange’s auction session 

has the lowest sequence number in OPRA data. In our dataset, we do not observe any instances 

where prices both higher and lower than the first recorded trade price occur within the same 

auction session. 

• We use LRTT procedure for SLAN trades with only one participant. 

• For SLAN trades with multiple participants, if any other trades within the same auction 

session occur at a price higher than the first recorded trade in OPRA data, we classify all 

trades in that particular auction as “buy.” Conversely, if any other trades within the same 

auction session occur at a price lower than the first recorded trade in OPRA data, we 

classify all trades in that particular auction as “sell.”  

• When executed quotes within the same auction session occur at the same price, we use 

the LRTT classification of the first recorded trade of the bunch (i.e., lowest sequence 

number)  for all trades executed in that session. Therefore, all trades within the same 

auction session have the same implied trade direction. 

A snapshot of the results of our procedure is shown in Table 5 as “OurTD”. We use PHLX 

October 2022 SLAN data to test the effectiveness of our classification procedure. Trades in the 

PHLX data are identified by trade type (either buy or sell), so we do not need to infer the direction. 

We are able to increase the correct classification of PHLX SLAN trades by about eight thousand 

observations. For an auction session where all trades have the same price, the accuracy of our 

classification depends on the accuracy of LRTT’s classification of the first recorded trade of the 

session. In the overall dataset that spans multiple exchanges, we believe our SLAN classification 



method enhances the results beyond the eight thousand observations of PHLX SLAN trades. 

However, to test the effectiveness, we only use PHLX SLAN trades data here.  

3.3  Main Independent Variables 

3.3.1   Order Imbalances 

Following standard practice, we estimate implied trade directions using the LRTT. In 

addition to the LRTT algorithm, we also utilize a procedure, described in Section 3.2 to slightly 

improve the classification accuracy of SLAN trades. When neither our procedure nor the LRTT 

algorithm can determine whether the trade is a buy or sell, the trade is classified as "mid" and 

excluded from our analyses, similar to the approach taken by Bryzgalova et al. (2023).  

We assume that when trades occur in the options market, MMs are the counterparties, 

profiting from the bid-ask spread when they sell option contracts at higher prices than they buy. 

As the primary liquidity providers in the options market, MMs are concerned about inventory 

risk. Thus, following Bollen and Whaley (2004), we define a measure of net order imbalance as 

the aggregate signed dollar volume of option contract trades over a 5-minute interval, but we 

adjust this measure to dollar terms to reflect the financial exposure of MMs. While Bollen and 

Whaley use aggregate daily data, our research focuses on intraday data. Our second measure is a 

market-wide order imbalance that excludes the local exchange’s order imbalance. We compute 

the order imbalance (OI) for option series i on exchange A at time t (in 5-minutes intervals), and 

other-venues’ order imbalance (OVOI) for option series i on other exchanges different from A 

within the same time interval as follows: 

OIi,A,t =  
∑ (BuyDollarVolContractsi,A,t −  SellDollarVolContractsi,A,t) i

∑ (BuyDollarVolContractsi,A,t  +  SellDollarVolContractsi,A,t)i

 



OVOIi,J,t =  ∑(OIi,J,t)

N

J≠A

 

A positive OI value indicates that MMs on a specific exchange sold more contracts than 

they bought and a positive OVOI value indicates that MMs are net sellers on a market-wide level 

that excludes the local exchange. 

3.3.2 Leverage 

To evaluate the effect of leverage on PIA dynamics, we compute a moneyness measure to 

proxy leverage. The view that DOTM are highly leveraged options has been entertained by many 

studies that include Hu(2014) and Pan and Poteshman (2006). We estimate a moneyness measure 

as the natural logarithm of the ratio of the strike price to the current stock price. To ensure 

consistent comparisons across options with varying time to expiration, we standardize this 

measure by dividing it by the square root of the calendar years to expiration. This is expressed as: 

Moneyness = [
ln (

StrikePrice

Stockprice
)

√CalendarDTE 
⁄ ]          where CalendarDTE > 0               

For analyses involving our moneyness measure, we exclude trade observations on their 

expiration date. Moneyness variable tends to be positive and higher for OTM call options with 

short maturities, while it is negative and lower for ITM call options with longer maturities. For put 

options, moneyness tends to be negative (positive) and lower (higher) for OTM (ITM) options with 

short (longer) maturities. We expect the partial effects of moneyness on the level price 

improvement provided to be positive for puts and negative for calls. 

3.4   Dependent Variables 



The main dependent variables in our analyses include price improvement and Auction. 

Auction is a binary variable, where a value of one indicates that there was at least one simple or 

complex PIA in the 5-minute interval, and zero otherwise. To measure the level of price 

improvement provided, we first estimate quoted half spread, effective half spread and effective 

spread to quoted spread ratio (EQ). Following Hendershott et al. (2023), we compute quoted half 

spread as the difference between the national best offer (NBO) and bid (NBB) prices at the time 

of trade, and effective half spread as the difference between transaction price and the spread 

midpoint multiplied by 1 (-1) if the implied direction of the transaction is a buy (sell).  

QuotedHalfSpread (QHS) =
NBO –  NBB

2
 

EffectiveHalfSpread (EHS) =  Dir.  × (TradePrice − (
NBO + NBB

2
)) 

Where Dir. is 1 for buys and -1 for sells. EQ is the ratio of the effective half spread to the quoted 

half spread with a lower value indicating lower transaction cost relative to the quoted spread. 

EQ =  
EHS

QHS
 

Price improvement is the difference between QHS and EHS, in cents. This is expressed in cents as: 

12 

Price Improvement (PI) = 100 × (QHS −  EHS) 

Thus, simplified for buy trades, price improvement is expressed as: 

PI = 100 × (NBO −  trade price) 

 
12 By design, price improvement (PI) measure in the options market auction mechanism (SLAN or MLAN) should not 
be negative. However, we found a few instances where trades were executed at prices outside of the prevailing bid-
ask spread. Further investigation shows that for a lot of these trades, execution occurred at or within the bid/ask 
prices of the most recently executed preceding trade that was often within a fraction of a second. 



and for sell trades as: 

PI = 100 × (trade price  −  NBB) 

 

4   Empirical Strategy and Results 

4.1 Individual and Cross Market Imbalance Effects 

4.1.1 Individual Imbalance Effects 

In this section, we examine how short-term inventory pressures, particularly within a PFOF 

environment, affect the price improvement provided for orders. Baldauf et al. (2024) argue that 

MMs might initiate PIAs and execute retail orders at narrower spreads not primarily due to lower 

information asymmetry, but because they reduce inventory risk. The analysis in this section also 

considers the presence of a DMM preferencing system, since DMMs pay the most in PFOF and 

DMM exchanges handled a greater share of trade executions (Ernst and Spatt, 2024). In our 

dataset, exchanges with DMM preferencing systems handled approximately 62% of listed equity 

options trades. This is consistent with broader industry trends, as reported by SIFMA Insights 

(2023), which indicates that 63.9% of all trades in the fiscal year 2022 occurred on exchanges with 

such systems.13 The first unrestricted regression model is specified as follows:  

Regression 1: For each option series i, at time t, on exchange j, on day k: 

PIijkt = α0 +  α1OIijkt + α2(OIijkt × PFOF_DMMPj) + α3(OIijkt × PFOF_DMMPj × Auctionijkt)

+ α4Auctionijkt + StockFE + ExchangeFE + DateFE + Xijkt  +  γijkt 

 
13 SIFMA Insights (2023) reports that a group of exchanges, including AMEX, ARCA, CBOE, GEMX, ISE, MIAX, MRX, 
PHLX and NasdaqBX, collectively executed 63.9% of all options trades. See: https://www.sifma.org/wp-
content/uploads/2023/04/SIFMA-Insights-The-ABCs-of-Equity-Market-Structure.pdf 



We also estimate and report restricted forms of this regression model. In the models, the key 

variables include: 

• PI: The price improvement provided. 

• OI: The individual order imbalance. 

• Auction: A binary variable that equals 1 if a SLAN or MLAN trade occurs within the interval, 
and 0 otherwise. 

• PFOF-DMMP: A binary variable equal to 1 if the exchange uses a payment for order flow 
pricing schedule and DMM preferencing, and 0 otherwise.14 

The control variables X include the average size of trades within the interval, the average bid-ask 

spread of the underlying stock, the square root of the calendar days to maturity, a binary indicator 

“Call” (1 for call options and 0 for puts), the average of absolute trade delta within the interval, 

the average implied volatility, gamma and vega within the interval, the natural logarithm of the 

market capitalization of the underlying stock, the natural logarithm of the daily traded volume of 

the underlying stock, the inverse of the average option and underlying stock quote midpoint, and 

a binary variable “Tick” that equals 1 if the average trade price of the option series within the 

interval is $3.00 or greater.  

Table 6 presents the regression results, highlighting key findings on auction activity and 

order imbalance. The coefficient on the auction variable is statistically significant and positive 

across all models, demonstrating that price improvements are higher in PIA mechanisms. The 

finding underscores the importance of PIA mechanisms in enhancing the execution quality of 

orders.  In contrast, OI exhibits a statistically significant negative impact on price improvement 

across all models. In Models 1 and 2, the coefficients are significant at the 1% significance level, 

 
14 We obtained information about exchanges that have Payment for Order Flow (PFOF) fee model and DMM 
preferencing from Hendershott et al. (2023) 



suggesting that greater order imbalance reduces price improvement for option orders. This 

suggests that MMs are generally concerned about increasing inventory risks due to higher 

inventory pressures. To mitigate these risks, they execute trades at higher relative effective 

spreads, thus providing less price improvement as a compensation for the higher inventory risk. 

[INSERT TABLE 6] 

 In Models 3 and 4, the inclusion of interaction terms diminishes both the magnitude and 

significance of OI. The interaction between OI and PFOF-DMMP in Model 3 is statistically 

significant and negative, suggesting that in PFOF-DMMP environments, orders that are more 

correlated with market trading trends receive less price improvement. Ernst and Spatt (2024) find 

that execution quality of options trade is lower when a PFOF-paying DMM is involved as customer 

orders receive less price improvement and worse prices. We find that inventory pressures worsen 

execution quality on DMMP exchanges that purchase order flow. The coefficient on the 

interactions “OI x PFOF-DMMP x Auction” is statistically significant and positive and offers 

additional insights. The positive coefficient on “OI x PFOF-DMMP x Auction” indicates that 

execution quality tends to be better in PFOF auctions where MM have special privileges. This 

improvement is likely driven by the need for PFOF exchanges to remain competitive in terms of 

execution quality to attract order flow from retail brokers. 

 Additionally, the statistically significant positive coefficients on variables related to stock 

liquidity suggest that higher stock prices and wider spreads may signal increased risk associated 

with the underlying stock. In response, MMs may provide higher price improvements as a tradeoff 

between managing inventory risk and generating spread income. Lower inventory risk and higher 



liquidity allows for more efficient risk hedging, as MMs can offset positions quickly and with lower 

execution costs.  

4.1.2  Cross Market Imbalance Effects  

Daures and Moinas (2022) argue that the quoting behavior of MMs on one trading venue 

is influenced by trade conditions on other venues, suggesting interconnected liquidity and 

competition across venues. Their model suggests that price improvements may be provided to 

orders on one venue in response to inventory-related quote adjustments by others resulting from 

trades in other venues. To explore this hypothesis, we investigate the impact of order imbalances 

and trading activities in other venues on the price improvement of orders on the local exchange 

in the following regression model:  

Regression 2: For each option series i, at time t, on exchange j or other exchanges m, on day k: 

PIijkt = α0 +  α1OIijkt + α2SAMEikt + α3(OIijkt × SAMEikt) + α4OVOIimkt

+ α5(OIijkt × OVOIimkt × SAMEikt)+α6(OIijkt × PFOF_DMMPj) + α7Auctionijkt

+ StockFE + ExchangeFE + DateFE + Xijkt  +  γijkt 

We also estimate and report restricted forms of this regression model. The control 

variables X remains consistent with the previous regression models. SAME is a binary variable set 

to one if the net order flow across other venues is in the same direction as the order flow on the 

local exchange in the time interval. OVOI represents the order imbalance on other exchanges, 

and OI × OVOI × SAME captures the combined effects of trading activities on the both the local 

exchange and other venues.  



Table 7 and Table 8 present the results. Table 7 focuses on the full sample of trades, while 

Table 8 examines a subsample restricted to intervals where there is at least one auction trade. 

The coefficient on the interaction term 'SAME x OI x OVOI' is statistically significant and negative 

in Table 7, suggesting that when buying pressure exists across all venues, and the direction of 

order flow is uniform between the local exchange and other trading venues, it signals increased 

inventory risk. As a result, MMs are likely to provide lesser price improvement to orders under 

these conditions to mitigate further inventory imbalances and reduce their exposure to potential 

losses. This suggest that when marginal costs are non-constant, MMs may provide lower price 

improvement to mitigate their risk exposure. In contrast, this coefficient is statistically significant 

and positive in the auction subsample analysis in Table 8, indicating that in the context of auction 

trades, MMs might adjust their strategies to remain competitive, potentially offering slightly 

higher price improvements to attract order flow despite the inventory pressure. Exchange trading 

and execution rules discourage broader participation in PIAs by anyone other than the initiating 

MM. Using Nasdaq PHLX as an example, Ernst and Spatt (2024) noted that MMs initiating PIAs on 

Nasdaq PHLX have the significant advantage to “selectively auto-match any competing bids in the 

auction.” 

 

[INSERT TABLE 7] 

 

[INSERT TABLE 8] 



Additionally, the initiating order is “guaranteed a minimum of 40% allocation” if it is at the best 

price provided in the auction, and “50% allocation if the initiating order is matching only one 

other participant at the execution price.”15 These preferential rules likely incentivize MMs to 

participate actively in auctions and offer competitive price improvements, as they can secure a 

larger share of the trade, thus justifying the slightly higher price improvements observed in 

auction settings. This analysis highlights how exchange-specific rules and competitive pressures 

in auction environments can lead to different price improvement strategies by MMs, depending 

on the broader market conditions and their inventory risk profiles. The results of this section 

support our fourth hypothesis, albeit only when competition is indicated by both uniform order 

flows across venues and a competitive PIA environment.  

4.2 Price Improvements, Moneyness and Order Imbalance 

Chakravarty et al. (2004) suggests that leverage effects are of primary importance relative 

to liquidity effects in determining the information content of option trades. This is particularly 

evident in short-maturity options, as Andersen et al. (2017) demonstrates in their study on S&P 

500 index options. Andersen et al. (2017) finds that the pricing of short-maturity ("weeklies") 

options can identify periods of higher concerns about negative tail events, which are not always 

reflected by standard volatility measures. DOTM options with short maturities are less sensitive 

to broader economic shifts and offer the highest leverage, as their prices primarily reflect the 

attributes of the risk-neutral jump process rather than the level of diffusive volatility (Andersen 

et al., 2017). Given this, informed traders seeking leverage through options are likely to gravitate 

 
15 See: https://nasdaqtrader.com/content/phlx/PIXLfaqs.pdf 



toward those that offer the greatest leverage. We investigate the effects of moneyness on the 

price improvement of orders using the following regression:  

Regression 3: For each option series i, at time t, on exchange j or other exchanges m, on day k ≠ expiration 
date: 

PIijkt = α0 + α1Moneynessijkt +α2OIijkt + α3SAMEikt + α4OVOIimkt

+ α5(OIijkt × OVOIimkt × SAMEikt)+α6(OIijkt × PFOF_DMMPj) + α7Auctionijkt

+ StockFE + ExchangeFE + DateFE + Xijkt  +  γijkt 

 The results are reported in Table 9 and 10. As expected, the moneyness variable is 

significant in both tables, reflecting the influence of leverage on price improvement. In Table 9, 

which focuses option trades excluding expiration days, the coefficient for moneyness is negative 

(positive) for calls (puts), indicating that as call (put) options move further OTM and the days to 

expiration shorten, price improvements tend to be lower. However, the coefficient is not 

statistically significant for calls.  

Table 10 examines option auction trades excluding expiration days and shows similar 

patterns. Here, the coefficient on moneyness is statistically significant for both calls and puts.  The 

findings in Table 9 and 10 suggest that OTM options, particularly those that are DOTM with short 

tenors, tend to attract more informed traders seeking high leverage. As a result, MMs may adjust 

their pricing behavior by providing lesser price improvement due to increased adverse selection 

risks. Overall, the results in this section support our fifth hypothesis that MMs provide lower price 

improvements for short-maturity, DOTM options compared to long-dated, DITM options due to 

the higher adverse selection risk associated with DOTM with short tenors. 

[INSERT TABLE 9] 



 

[INSERT TABLE 10] 

4.3 Auctions and Order Imbalance 

In the preceding section, we show that order imbalance significantly influences the level 

of price improvement in the options market and document cross-market effects of Daures and 

Moinas (2022) model. In this section, we investigate whether order imbalance plays a significant 

role in MMs’ decisions to initiate PIAs. Bauldauf et al. (2024) demonstrates that in a PFOF 

environment, MMs may be driven by portfolio management concerns to cream-skim retail orders, 

executing them off-exchange at smaller spreads. Their model implies that in the options market, 

the inventory hedging benefits derived from retail orders could drive MMs' endogenous decisions 

to initiate PIAs. They argue that retail orders are less correlated, smaller and contribute less to 

inventory risk. To test this hypothesis, we use trade data of exchanges that have PIA mechanisms. 

We estimate the following linear probability model on trades on exchanges with PIA mechanisms: 

Regression 4: For each option series i, at time t, on exchange j, on day k: 

𝐴𝑢𝑐𝑡𝑖𝑜𝑛ijtk = α0 + α1OIijkt + α2SAMEikt + α4OVOIimkt + α5(OIijkt × OVOIimkt × SAMEikt)

+ α6(OIijkt × PFOF_DMMPj) + StockFE + ExchangeFE + DateFE + Xijkt  +  γijkt 

Tables 11 and 12 present the results of this regression and its restricted forms. 

 

[INSERT TABLE 11] 

[INSERT TABLE 12] 

 



Table 11 reports regression results of the probability of auctions in exchanges with PIA 

mechanisms. The coefficients of OI and average size are negative and statistically significant 

across all model specifications. This suggests that the probability of an auction decreases as order 

imbalance and average trade size increase. Bauldauf et al. (2024) show that in a PFOF 

environment, MMs are more likely to execute retail equity orders off-exchange at smaller spreads, 

particularly when these orders are less correlated than institutional orders. In their model, retail 

orders are smaller and less correlated. The negative coefficients on OI and AvgSize in our analysis 

suggest that PIAs are more likely to occur during periods of non-uniform order flow and for 

smaller trades. In PFOF environments, higher order imbalances further decrease the probability 

of PIA. This implies that MMs internalize smaller and less correlated trades through PIA 

mechanisms, where they can offer price improvements while managing their inventories. MMs, 

particularly in PFOF-DMMP settings, are likely concerned about inventory risks and are less likely 

to participate in PIAs when they face significant order imbalances. This behavior aligns with the 

idea that MMs strategically use PIAs to manage broader portfolio risks. 

Moreover, the coefficient for the lagged Auction variable is statistically significant and 

positive, suggesting that the occurrence of an auction in the previous interval increases the 

probability of another auction in the current interval. Hendershott et al. (2024) argue that PFOF-

paying DMMs compete more on the number of auctions rather than on price improvements, 

using the frequency of auctions as a signal to encourage others to improve prices. 

Table 12 provides additional insights by focusing on a subsample of exchanges that utilize 

a PFOF-DMMP pricing model. The results are consistent with Table 11, further highlighting the 

negative impact of OI and the cross-market effects of order imbalance on auction probability. 



While the coefficient for option spreads is insignificant in Table 11, it is significant and positive in 

Table 12. This suggests that PFOF-paying DMMs are more likely to initiate auctions when spreads 

are wider, a finding consistent with Hendershott et al. (2024). 

In summary, the findings from Tables 11 and 12 support our second hypothesis: MMs are 

more likely to initiate PIAs when they face lower order imbalances, typically associated with less 

correlated order flows. This behavior highlights the importance of inventory management in 

MMs' decision-making processes, particularly in the context of PFOF-DMMP exchanges. 

 

5.0 Conclusions 

We investigate the impact of inventory pressures on the probability of auctions in equity 

options and the level of price improvement these options receive, both within single- and multi-

leg limit order books and auction environments. Additionally, we explore the cross-market effects 

of inventory pressures on other venues and how they influence dynamics at the local exchange. 

Our findings indicate that the probability of auctions increases during periods of less correlated 

orders, as these contribute less to inventory risks. 

We also find that market makers' order imbalances have a significant negative effect on 

price improvement in the options market. This suggests that market makers are generally 

concerned about rising inventory risks associated with higher inventory pressures. To mitigate 

these risks, they execute trades at effective spreads closer to the quoted spreads, providing less 

price improvement as compensation for the increased inventory risk or as a deterrent to order 

flow. 



When marginal costs are non-constant, market makers may further reduce price 

improvement to limit their risk exposure. We also highlight how price improvement auction 

environments can drive different price improvement strategies by market makers, depending on 

broader market conditions and their inventory risk profiles. In highly competitive environments, 

characterized by uniform order flows across multiple venues and intense price improvement 

auction settings, market makers with higher inventory imbalances may offer greater price 

improvement in auctions as a strategy to manage inventory risks. Finally, we find that market 

makers provide lower price improvements for short-maturity, deep out-of-the-money options 

compared to long-dated, deep in-the-money options, due to the higher adverse selection risks 

associated with short-tenor deep out-of-the-money option. 
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Table 1 

Data Summary Statistics 
This table presents sample descriptive statistics computed from trades in the filtered October 2022 data sample. Quoted spread 
is (NBO-NBB)/2.0, while the effective spread is the difference between option price and midpoint, times trade direction. Price 
improvement is the difference between the quoted spread and the effective spread. CALL is a binary variable equal to one if the 
trade is trade on calls options and zero if on puts. BUY is a binary variable equal to one if the implied trade direction is a buy and 
zero if it is a sell. Tick is a binary variable that equals one if the trade price of the option series is $3.00 or greater. IVOL is the 
implied volatility in the option series at the time of the trade.  

  Percentiles 

 mean St. Dev 1% 25% 50% 75% 99% 

Trade Size 5.27 27.62 1 1 1 4 58 

Trade Price, $ 5.03 11.38 0.05 0.96 2.38 5.35 42.10 

IVOL 0.72 0.46 0.24 0.45 0.63 0.83 2.39 

Stock Midpoint, $ 139.23 128.46 3.14 54.01 119.43 216.76 496.49 

Option Midpoint, $ 5.03 11.37 0.05 0.97 2.38 5.35 42.13 

Days to Expiry 49.72 113.20 0 3 10 39 616 

Effective Spread 0.04 0.12 0 0.01 0.02 0.04 0.45 

Quoted Option Spread 0.08 0.20 0.01 0.02 0.03 0.08 0.88 

EQ 0.66 0.44 -0.06 0.25 1 1 1 

Price Improvement, $  0.04 0.16 0 0 0 0.03 0.52 

Vega 0.10 0.16 0 0.02 0.05 0.11 0.75 

Gamma 0.054 0.11 0 0.01 0.03 0.06 0.46 

Stock Volume, 1M 39.22 44.85 0.44 5.78 18.68 68.51 223.04 

MCAP, 100M 4,003.73 5,721.02 3.79 299.30 1,284.67 6,670.75 23,774.70 

|∆| 0.39 0.21 0.01 0.23 0.39 0.51 0.95 

Tick 0.42 0.49 0 0 0 1 1 

Quoted Stock Spread, $ 0.04 0.16 0 0.01 0.01 0.03 0.37 

CALLS 0.57 0.50 0 0 1 1 1 

BUYS 0.50 0.50 0 0 1 1 1 



Table 2 
Pricing Models, Auction Types, and Contract Volumes Across U.S. Options Exchanges 

This table presents information on various U.S. options exchanges, including their pricing models and whether they offer price 
improvement auctions (single-leg or multi-leg). PFOF stands for payment for order flow, MT for maker-taker and TM for taker-
maker. The table also presents which exchanges use Designated Market Maker (DMM) preferencing. Additionally, the table shows 
the traded contracts volume and total number of observations in our October 2022 dataset for each trade mechanism. SLAN and 
MLAN are auction trades in single-leg and multi-leg auction mechanisms, respectively. AutoEx and MLAutoEx are simple limit 
order book trades and complex limit order book trades, respectively. 

Exchanges 
Pricing 
Model 

Single-leg 
Auctions 

Multi-
leg 

Auctions 
DMM 

Preferencing  Contracts Volume ( %)  

     
AutoEx MLAutoEx SLAN MLAN All 

AMEX PFOF Yes Yes Yes 3.44 7.38 10.67 0.95 5.32 

ARCA PFOF No No Yes 20.56 7.85   13.70 

BOX MT Yes Yes No 4.60 1.05 4.83 0.45 3.92 

BZX MT No No No 13.41    8.17 

C2 MT No No No 5.08 5.59   3.93 

CBOE PFOF Yes Yes Yes 5.23 11.90 18.51 67.34 11.72 

EDGX MT Yes Yes No 5.56 12.71 3.02 3.52 6.04 

EMLD MT Yes No No 4.15 2.40 0.03  2.89 

GEMX MT Yes No Yes 5.64  0.55  3.54 

ISE PFOF Yes Yes Yes 0.84 31.58 7.00 4.37 6.79 

MIAX PFOF Yes Yes Yes 1.83 11.66 12.64 14.27 5.98 

MRX MT Yes Yes Yes 0.45 1.19 6.43 4.63 1.92 

NASD MT No No No 16.89    10.30 

NASDBX TM Yes No Yes 3.86  0.08  2.37 

PEARL MT No No No 4.86    2.96 

PHLX PFOF Yes Yes Yes 3.62 6.68 36.25 4.47 10.46 

    

Total 
Contracts 
Volume 117,511,248 28,782,481 37,492,078 9,048,308 192,834,115 

    NObs. 22,441,079 5,089,143 7,350,436 1,738,246 36,618,904 

 

 

 

 



Table 3 
Trade Mechanisms and Execution Quality Across U.S. Options Exchanges 

This table presents a comparison of price improvement (PI) and the ratio of effective spread to quoted spread (EQ) across various 
U.S. options exchanges for October 2022. SLAN and MLAN are auction trades in single-leg and multi-leg auction mechanisms, 
respectively. AutoEx and MLAutoEx are simple limit order book trades and complex limit order book trades, respectively.  

Limit Order Book 
 

Auctions 

 AutoEx MLAutoEx  SLAN MLAN 

Exchanges PI EQ PI EQ  PI EQ PI EQ 

          

AMEX -0.00 1.00 9.36 0.38  3.43 0.48 4.20 0.64 

ARCA 0.00 1.00 21.78 0.37      

BOX -0.05 1.02 2.80 0.88  4.02 0.60 1.85 0.79 

BZX 2.39 0.63        

C2 5.81 0.56 8.54 0.32      

CBOE 1.54 0.84 11.50 0.34  3.85 0.41 7.85 0.25 

EDGX 1.37 0.82 9.84 0.34  2.04 0.65 8.24 0.25 

EMLD -0.05 1.01 12.10 0.36  2.54 0.63   

GEMX 2.06 0.67    2.43 0.71   

ISE 0.81 0.95 10.96 0.31  1.56 0.64 10.92 0.33 

MIAX -0.11 1.02 10.87 0.34  3.21 0.49 6.01 0.22 

MRX 0.05 1.01 8.77 0.44  3.06 0.56 5.88 0.50 

NASD 2.71 0.68        

NASDBX 1.53 0.88    3.47 0.57   

PEARL -0.03 1.01        

PHLX 0.84 0.94 14.63 0.44  4.02 0.34 6.00 0.48 

 

 

 

 

 

 

 



Table 4 

Difference-in-Means Analysis of Execution Quality Across Binary Regressors 
This table presents the regression results comparing the average execution quality across different trade mechanisms. Columns 
(1) through (4) display various regression models for the dependent variables: PI (Price Improvement) and EQ (the ratio of effective 
half spread to quoted half spread). The models incorporate different combinations of fixed effects, including StockFE and DayFE, 
and cluster errors at the option and day levels where applicable. Significance levels are denoted as ***p < 0.01, **p < 0.05, and 
*p < 0.10. 

 

 

 

 

 

  

 

 PI 
 

EQ 

      (1) (2) (3)   (4) 
 

    (1)   (2)   (3)   (4) 

Constant 1.4918*** 

(0.003) 

1.8020*** 

(0.004) 

     0.8291*** 

 (0.000) 

0.7791*** 

(0.000) 

  

SLAN 1.9249*** 

(0.006) 

2.3096*** 

(0.007) 

2.5312*** 

(0.069) 

3.1740*** 

(0.073) 

 -0.3647*** 

  (0.000) 

-0.4283*** 

 (0.000) 

-0.3681*** 

 (0.006) 

-0.4320*** 

 (0.005) 

MLAN 5.9811*** 

(0.012) 

6.4278*** 

(0.012) 

6.0401*** 

(0.140) 

6.7922*** 

(0.139) 

 -0.5615*** 

  (0.000) 

-0.6356*** 

 (0.000) 

-0.5578*** 

 (0.004) 

-0.6322*** 

 (0.003) 

MLAutoEx 10.2753*** 

(0.007) 

10.5504*** 

(0.008) 

9.3405*** 

(0.223) 

9.8183*** 

(0.221) 

 -0.4812*** 

  (0.000) 

-0.5275*** 

  (0.000) 

-0.4815*** 

 (0.004) 

-0.5274*** 

 (0.004) 

DMMP  -0.3664*** 

 (0.010) 

 -0.2742*** 

(0.089) 

  0.0499*** 

(0.000) 

 0.0484*** 

(0.010) 

PFOF  -0.4428*** 

 (0.010) 

 -1.0516*** 

(0.080) 

  0.0833*** 

(0.000) 

 0.0846*** 

(0.011) 

StockFE No No Yes Yes  No No Yes Yes 

DayFE No No Yes Yes  No No Yes Yes 

Clustered No No Yes Yes  No No Yes Yes 

R2 0.052 0.055 0.052 0.054  0.237 0.254 0.236 0.252 

NObs 36,618,904 36,618,904 36,618,904 36,618,904  36,618,904 36,618,904 36,618,904 36,618,904 



Table 5 

SLAN Trade Direction Classification  
This table shows the implied trade direction classification for a sample of October 2022 single-leg price improvement option trades using Lee and Ready (1991) tick-test procedure 

and our procedure. “Sequence number” is the trade sequence number for the execution reported by OPRA. “Exchange” is the options exchange the trade was executed on. “LRTT” 

represents Lee and Ready (1991) trade direction classification, “OurTD” is trade direction classification using our procedure, and PhlxTD is the trade direction indicated by PHLX 

exchange for SLAN trades executed on PHLX. 

stock quote datetime 
sequence 
number 

expiration 
date strike type exchange 

trade 
price 

best 
bid 

best 
ask midpoint LRTT OurTD PhlxTD 

AAPL "10/3/2022  9:40:07.053" 120886338 10/7/2022 140 P PHLX 3.83 3.80 3.85 3.82 buy sell sell 

AAPL "10/3/2022  9:40:07.053" 120886339 10/7/2022 140 P PHLX 3.81 3.80 3.85 3.82 sell sell sell 

AAPL "10/3/2022  11:55:52.286" 1137821820 1/20/2023 130 P MIAX 6.49 6.45 6.50 6.47 buy sell 

 
AAPL "10/3/2022  11:55:52.286" 1137821821 1/20/2023 130 P MIAX 6.46 6.45 6.50 6.47 sell sell 

 
AAPL "10/3/2022  11:55:52.286" 1137821825 1/20/2023 130 P MIAX 6.46 6.45 6.50 6.47 sell sell 

 
COST "10/3/2022  13:38:39.065" 2927380618 10/14/2022 425 P PHLX 0.95 0.91 0.97 0.94 buy sell sell 

COST "10/3/2022  13:38:39.065" 2927380619 10/14/2022 425 P PHLX 0.92 0.91 0.97 0.94 sell sell sell 

COST "10/3/2022  13:38:39.065" 2927380620 10/14/2022 425 P PHLX 0.92 0.91 0.97 0.94 sell sell sell 

AAPL "10/3/2022  14:51:27.342" 1933674362 12/16/2022 145 C PHLX 8.84 8.80 8.90 8.85 sell buy buy 

AAPL "10/3/2022  14:51:27.342" 1933674363 12/16/2022 145 C PHLX 8.87 8.80 8.90 8.85 buy buy buy 

AMD "10/3/2022  15:32:53.224" 924101912 11/18/2022 80 C PHLX 1.34 1.33 1.35 1.34 sell buy buy 

AMD "10/3/2022  15:32:53.224" 924101913 11/18/2022 80 C PHLX 1.35 1.33 1.35 1.34 buy buy buy 

AMZN "10/3/2022  14:33:49.018" 529949441 10/7/2022 118 C PHLX 1.56 1.55 1.58 1.57 sell buy buy 

AMZN "10/3/2022  14:33:49.018" 529949442 10/7/2022 118 C PHLX 1.57 1.55 1.58 1.57 buy buy buy 

ABNB "10/3/2022  10:03:04.870" 365010563 12/16/2022 145 C CBOE 1.26 1.14 1.37 1.25 buy sell 

 



ABNB "10/3/2022  10:03:04.870" 365010565 12/16/2022 145 C CBOE 1.26 1.14 1.37 1.25 buy sell 

 
ABNB "10/3/2022  10:03:04.870" 365010567 12/16/2022 145 C CBOE 1.25 1.14 1.37 1.25 sell sell 

 
ABNB "10/3/2022  10:03:04.870" 365010568 12/16/2022 145 C CBOE 1.25 1.14 1.37 1.25 sell sell 

 
ABNB "10/3/2022  10:03:04.870" 365010570 12/16/2022 145 C CBOE 1.25 1.14 1.37 1.25 sell sell 

 
ABNB "10/3/2022  10:03:04.870" 365010571 12/16/2022 145 C CBOE 1.25 1.14 1.37 1.25 sell sell 

 
ALGN "10/3/2022  10:35:04.923" 643521211 10/7/2022 225 C AMEX 3.04 2.50 3.40 2.95 buy sell 

 
ALGN "10/3/2022  10:35:04.923" 643521213 10/7/2022 225 C AMEX 2.95 2.50 3.40 2.95 sell sell 

 
ALGN "10/3/2022  10:35:04.923" 643521214 10/7/2022 225 C AMEX 2.99 2.50 3.40 2.95 buy sell 

 
ALGN "10/3/2022  10:35:04.923" 643521216 10/7/2022 225 C AMEX 3.00 2.50 3.40 2.95 buy sell 

 
ALGN "10/3/2022  10:35:04.923" 643521221 10/7/2022 225 C AMEX 3.04 2.50 3.40 2.95 buy sell 

 
LNG "10/3/2022  09:50:32.202" 349168692 10/21/2022 160 P GEMX 3.40 3.30 3.60 3.45 sell sell 

 
LNG "10/3/2022  09:50:32.202" 349168709 10/21/2022 160 P GEMX 3.40 3.30 3.60 3.45 sell sell 

 
LNG "10/3/2022  09:50:32.202" 349168716 10/21/2022 160 P GEMX 3.40 3.30 3.60 3.45 sell sell 

 
LNG "10/3/2022  09:50:32.202" 349168739 10/21/2022 160 P GEMX 3.40 3.30 3.60 3.45 sell sell 

 
LNG "10/3/2022  09:50:32.202" 349168770 10/21/2022 160 P GEMX 3.40 3.30 3.50 3.40 mid sell 

 
LNG "10/3/2022  09:50:32.202" 349168815 10/21/2022 160 P GEMX 3.40 3.30 3.50 3.40 mid sell 

 
LNG "10/3/2022  09:50:32.202" 349168829 10/21/2022 160 P GEMX 3.40 3.30 3.50 3.40 mid sell 

 
LNG "10/3/2022  09:50:32.202" 349168854 10/21/2022 160 P GEMX 3.40 3.30 3.50 3.40 mid sell 

 
LNG "10/3/2022  09:50:32.202" 349168994 10/21/2022 160 P GEMX 3.40 3.30 3.40 3.35 buy sell 

 



Table 6 
Price Improvements, Order Imbalance, PFOF and DMMs 

This table presents the regression results examining the impact of various factors on the price improvement of options orders for 
the October 2022 sample period. The dependent variable, Price improvement, is defined as the difference between the quoted 
half-spread and the effective half-spread, measured in cents. OI (Order Imbalance) represents short-term inventory pressure on 
market makers. Auction is a binary variable equal to one if at least one trade within the interval was executed in a single- or multi-
leg price improvement auction, and zero otherwise. PFOF-DMMP is a binary variable equal to one if the exchange has Designated 
Market Maker (DMM) preferencing and uses a payment for order flow pricing structure, and zero otherwise. AvgSize is the natural 
logarithm of the average trade size within the interval. Call is a binary variable equal to one if the option is a call. MCAP is the 
natural logarithm of the market capitalization of the underlying stock, and StockVol is the natural logarithm of the daily traded 
volume of the underlying stock. Tick is a binary variable equal to one if the average trade price of the option series within the 
interval is $3.00 or greater. StockSpread is the average spread of the underlying stock within the interval. The inverse of the 
average option and underlying stock quote midpoint is also included in the analysis. All specifications include fixed effects for the 
underlying stock, day, and exchange. Standard errors are double-clustered at the option and day levels and are reported in 
parentheses. ***p < 0.01, **p < 0.05, and *p < 0.10 

VARIABLES    (1)     (2)    (3) (4) 

OI -0.0545*** 
(0.0071) 

-0.0563*** 
(0.0069) 

-0.0224** 
(0.0090) 

-0.0224** 
(0.0090) 

OI x PFOF-DMMP   -0.0680*** 
(0.0099) 

-0.1134*** 
(0.0112) 

OI x PFOF-DMMP x Auction    0.1042*** 
(0.0139) 

Auction 0.7509*** 
(0.0495) 

0.7522*** 
(0.0486) 

0.7516*** 
(0.0486) 

0.7533*** 
(0.0486) 

AvgSize 0.0823*** 
(0.0092) 

0.0825*** 
(0.0092) 

0.0824*** 
(0.0092) 

0.0825*** 
(0.0092) 

Call -0.3303*** 
(0.0541) 

-0.3363*** 
(0.0539) 

-0.3364*** 
(0.0540) 

-0.3361*** 
(0.0539) 

√DTE 0.3860*** 
(0.0199) 

0.3836*** 
(0.0196) 

0.3836*** 
(0.0196) 

0.3836*** 
(0.0196) 

AvgIVOL 1.6789*** 
(0.1878) 

1.6028*** 
(0.1768) 

1.6030*** 
(0.1768) 

1.6027*** 
(0.1767) 

AvgDelta 12.4980*** 
(0.3704) 

12.5069*** 
(0.3674) 

12.5074*** 
(0.3675) 

12.5078*** 
(0.3675) 

AvgGamma 1.4744*** 
(0.3503) 

1.5037*** 
(0.3428) 

1.5043*** 
(0.3427) 

1.5051*** 
(0.3429) 

AvgVega 18.3195*** 
(0.7358) 

18.4542*** 
(0.7268) 

18.4540*** 
(0.7267) 

18.4534*** 
(0.7268) 

1/OptionMidpoint 0.0617*** 
(0.0053) 

0.0628*** 
(0.0053) 

0.0629*** 
(0.0053) 

0.0630*** 
(0.0053) 

MCAP 2.0175*** 
(0.3580) 

2.4030*** 
(0.2802) 

2.4034*** 
(0.2801) 

2.4042*** 
(0.2801) 

Tick -1.8803*** 
(0.1432) 

-1.8865*** 
(0.1416) 

-1.8866*** 
(0.1416) 

-1.8870*** 
(0.1416) 

1/StockMidpoint  -0.8373*** 
(0.2840) 

-0.8379*** 
(0.2838) 

-0.8390*** 
(0.2838) 

StockSpread  6.7051*** 
(0.4244) 

6.7050*** 
(0.4244) 

6.7049*** 
(0.4244) 

StockVol  0.6500*** 
(0.0704) 

0.6500*** 
(0.0704) 

0.6494*** 
(0.0704) 

R2 0.160 0.162 0.162 0.162 
NObs. 20,246,444 20,246,444 20,246,444 20,246,444 



Table 7 
Price Improvements and Cross-Market Effects 

This table presents the regression results examining cross-market effects on the price improvement of options orders for the 
October 2022 sample period. The dependent variable, Price improvement, is defined as the difference between the quoted half-
spread and the effective half-spread, measured in cents. OI (Order Imbalance) represents short-term inventory pressure on market 
makers. Auction is a dummy variable equal to one if at least one trade within the interval was executed in a single- or multi-leg 
price improvement auction, and zero otherwise. PFOF-DMMP is a binary variable equal to one if the exchange has Designated 
Market Maker (DMM) preferencing and uses a payment for order flow pricing structure, and zero otherwise. AvgSize is the natural 
logarithm of the average trade size within the interval. Call is a dummy variable equal to one if the option is a call. MCAP is the 
natural logarithm of the market capitalization of the underlying stock, and StockVol is the natural logarithm of the daily traded 
volume of the underlying stock. Tick is a binary variable equal to one if the average trade price of the option series within the 
interval is $3.00 or greater. OVOI is the order imbalance on other exchanges. SAME is a binary variable set to one if the net order 
flow across other venues is in the same direction as the order flow on the local exchange in the time interval. StockSpread is the 
average spread of the underlying stock within the interval. The inverse of the average option and underlying stock quote midpoint 
is also included in the analyses. All specifications include fixed effects for the underlying stock, day, and exchange. Standard errors 
are double-clustered at the option and day levels and are reported in parentheses. ***p < 0.01, **p < 0.05, and *p < 0.10 

VARIABLES    (1)     (2)     (3) 

OI -0.0191*** 
(0.0074) 

-0.0141* 
(0.0077) 

-0.0142* 
(0.0077) 

SAME -0.7948*** 
(0.0237) 

-0.7948*** 
(0.0237) 

-0.6739*** 
(0.0351) 

SAME x OI  0.0018 
(0.0115) 

  

OVOI  -0.0155* 
(0.0087) 

-0.0154* 
(0.0087) 

SAME x OI x OVOI   -0.1607*** 
(0.0271) 

OI x PFOF-DMMP  -0.0690*** 
(0.0097) 

-0.0711*** 
(0.0097) 

-0.0712*** 
(0.0097) 

Auction 0.6827*** 
(0.0480) 

0.6827*** 
(0.0480) 

0.6774*** 
(0.0480) 

AvgSize 0.0927*** 
(0.0091) 

0.0927*** 
(0.0091) 

0.0922*** 
(0.0091) 

Call -0.3425*** 
(0.0544) 

-0.3425*** 
(0.0544) 

-0.3444*** 
(0.0544) 

√DTE 0.3826*** 
(0.0195) 

0.3826*** 
(0.0195) 

0.3833*** 
(0.0195) 

AvgIVOL 1.6116*** 
(0.1807) 

1.6117*** 
(0.1807) 

1.6094*** 
(0.1800) 

AvgDelta 12.5134*** 
(0.3670) 

12.5140*** 
(0.3670) 

12.5089*** 
(0.3671) 

AvgGamma 1.5572*** 
(0.3372) 

1.5573*** 
(0.3372) 

1.5527*** 
(0.3386) 

AvgVega 18.4181*** 
(0.7253) 

18.4182*** 
(0.7253) 

18.4221*** 
(0.7256) 

1/OptionMidpoint 0.0619*** 
(0.0053) 

0.0619*** 
(0.0053) 

0.0621*** 
(0.0053) 

MCAP 2.4181*** 
(0.2783) 

2.4178*** 
(0.2783) 

2.4140*** 
(0.2781) 

Tick -1.8942*** 
(0.1416) 

-1.8944*** 
(0.1416) 

-1.8921*** 
(0.1417) 



1/StockMidpoint -0.8528*** 
(0.2816) 

-0.8531*** 
(0.2816) 

-0.8538*** 
(0.2817) 

StockSpread 6.7144*** 
(0.4253) 

6.7145*** 
(0.4253) 

6.7116*** 
(0.4252) 

StockVol 0.6651*** 
(0.0701) 

0.6653*** 
(0.0701) 

0.6606*** 
(0.0702) 

R2 0.163 0.163 0.165 

NObs. 20,246,444 20,246,444 20,246,444 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8 
Auction Subsample Analysis: Price Improvements and Cross-Market Effects 

This table presents regression results analyzing cross-market effects on price improvements for options orders during intervals 
that include at least one auction trade. The sample period covers October 2022. The dependent variable, Price improvement, is 
defined as the difference between the quoted half-spread and the effective half-spread, measured in cents. OI (Order Imbalance) 
represents short-term inventory pressure on market makers. PFOF-DMMP is a binary variable equal to one if the exchange has 
Designated Market Maker (DMM) preferencing and uses a payment for order flow pricing structure, and zero otherwise. AvgSize 
is the natural logarithm of the average trade size within the interval. Call is a dummy variable equal to one if the option is a call. 
MCAP is the natural logarithm of the market capitalization of the underlying stock, and StockVol is the natural logarithm of the 
daily traded volume of the underlying stock. Tick is a binary variable equal to one if the average trade price of the option series 
within the interval is $3.00 or greater. OVOI is the order imbalance on other exchanges. SAME is a binary variable set to one if the 
net order flow across other venues is in the same direction as the order flow on the local exchange in the time interval. 
StockSpread is the average spread of the underlying stock within the interval. The inverse of the average option and underlying 
stock quote midpoint is also included in the analyses. All specifications include fixed effects for the underlying stock, day, and 
exchange. Standard errors are double-clustered at the option and day levels and are reported in parentheses. ***p < 0.01, **p < 
0.05, and *p < 0.10 

VARIABLES    (1)     (2)    (3) 

OI -0.0272** 
(0.0117) 

-0.0230** 
(0.0117) 

-0.0241** 
(0.0115) 

SAME  -0.7940*** 
(0.0179) 

-0.9285*** 
(0.0286) 

OVOI   0.0108 
(0.0093) 

SAME x OI x OVOI   0.1982*** 
(0.0245) 

OI x PFOF-DMMP  0.0194* 
(0.0114) 

0.0198* 
(0.0117) 

0.0203* 
(0.0115) 

AvgSize 0.0420*** 
(0.0095) 

0.0484*** 
(0.0095) 

0.0499*** 
(0.0094) 

Call -0.3588*** 
(0.0561) 

-0.3468*** 
(0.0556) 

-0.3450*** 
(0.0555) 

√DTE 0.3059*** 
(0.0213) 

0.3004*** 
(0.0212) 

0.2993*** 
(0.0212) 

AvgIVOL 1.1706*** 
(0.1929) 

1.1808*** 
(0.1965) 

1.1819*** 
(0.1975) 

AvgDelta 14.1605*** 
(0.4418) 

14.1968*** 
(0.4403) 

14.2068*** 
(0.4404) 

AvgGamma -0.7404** 
(0.3379) 

-0.6831** 
(0.3301) 

-0.6846** 
(0.3292) 

AvgVega 30.9078*** 
(1.3088) 

30.8640*** 
(1.3064) 

30.8511*** 
(1.3061) 

1/OptionMidpoint 0.0704*** 
(0.0051) 

0.0695*** 
(0.0050) 

0.0692*** 
(0.0050) 

MCAP 2.4662*** 
(0.2680) 

2.5034*** 
(0.2676) 

2.5064*** 
(0.2672) 

Tick -0.7518*** 
(0.1471) 

-0.7645*** 
(0.1466) 

-0.7673*** 
(0.1465) 

1/StockMidpoint -0.5677 
(0.3615) 

-0.5460 
(0.3628) 

-0.5449 
(0.3628) 

StockSpread 11.7901*** 
(0.8474) 

11.8280*** 
(0.8491) 

11.8325*** 
(0.8490) 



StockVol 0.7539*** 
(0.0744) 

0.7862*** 
(0.0739) 

0.7910*** 
(0.0740) 

R2 0.242 0.244 0.244 

NObs. 5,411,428 5,411,428 5,411,428 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 9 
Price Improvements, Cross-Market Effects and Moneyness 

This table presents the regression results examining leverage effects on the price improvements of options orders that are not 
trading on their expiration day during the October 2022 sample period. The dependent variable, Price improvement, is defined 
as the difference between the quoted half-spread and the effective half-spread, measured in cents. OI (Order Imbalance) 
represents short-term inventory pressure on market makers. Auction is a binary variable equal to one if at least one trade within 
the interval was executed in a single- or multi-leg price improvement auction, and zero otherwise. Moneyness is computed as the 
ln(Strike price/Stock price)/ √DTE, where DTE is the calendar days to expiration. PFOF-DMMP is a binary variable equal to one if 
the exchange has Designated Market Maker (DMM) preferencing and uses a payment for order flow pricing structure, and zero 
otherwise. AvgSize is the natural logarithm of the average trade size within the interval. Call is a dummy variable equal to one if 
the option is a call. MCAP is the natural logarithm of the market capitalization of the underlying stock, and StockVol is the natural 
logarithm of the daily traded volume of the underlying stock. Tick is a binary variable equal to one if the average trade price of 
the option series within the interval is $3.00 or greater. OVOI is the order imbalance on other exchanges. SAME is a binary variable 
set to one if the net order flow across other venues is in the same direction as the order flow on the local exchange in the time 
interval. StockSpread is the average spread of the underlying stock within the interval. The inverse of the average option quote 
midpoint is also included in the analyses. All specifications include fixed effects for the underlying stock, day, and exchange. 
Standard errors are double-clustered at the option and day levels and are reported in parentheses. ***p < 0.01, **p < 0.05, and 
*p < 0.10 

VARIABLES    All     Calls    Puts 

Moneyness 5.0505*** 
(1.0676) 

-1.5279 
(1.4164) 

5.5981*** 
(2.0765) 

OI -0.0240*** 
(0.0070) 

-0.0045 
(0.0112) 

-0.0525*** 
(0.0149) 

SAME -0.8672*** 
(0.0448) 

-0.7861*** 
(0.0550) 

-0.9540*** 
(0.0518) 

OVOI -0.0426*** 
(0.0082) 

-0.0381*** 
(0.0097) 

-0.0487*** 
(0.0154) 

SAME x OI x OVOI 0.0626* 
(0.0344) 

0.0531 
(0.0506) 

0.0620 
(0.0439) 

OI x PFOF-DMMP  -0.0576*** 
(0.0096) 

-0.0429*** 
(0.0098) 

-0.0731*** 
(0.0180) 

Auction 0.5377*** 
(0.0518) 

0.6020*** 
(0.0494) 

0.4806*** 
(0.0745) 

AvgSize 0.1383*** 
(0.0107) 

0.1102*** 
(0.0084) 

0.1779*** 
(0.0186) 

Call -0.4099*** 
(0.0767) 

  

AvgIVOL 0.9405*** 
(0.1421) 

1.1262*** 
(0.1593) 

0.9345*** 
(0.1689) 

AvgDelta 10.8021*** 
(0.3298) 

9.2525*** 
(0.4100) 

11.6069*** 
(0.7168) 

AvgGamma -4.8021*** 
(0.3864) 

-3.8643*** 
(0.3010) 

-7.6415*** 
(0.7445) 

AvgVega 26.1091*** 
(0.7506) 

27.0839*** 
(0.8536) 

24.9021*** 
(1.0308) 

1/OptionMidpoint 0.0441*** 
(0.0033) 

0.0485*** 
(0.0056) 

0.0499*** 
(0.0074) 

MCAP 1.2387*** 
(0.3380) 

1.8442*** 
(0.3095) 

0.3269 
(0.7202) 



Tick -1.3231*** 
(0.1144) 

-1.0692*** 
(0.1126) 

-1.6385*** 
(0.1790) 

StockSpread 7.0404*** 
(0.5438) 

8.4926*** 
(1.0854) 

5.8901*** 
(0.5389) 

StockVol 0.7057*** 
(0.0845) 

0.6740*** 
(0.0768) 

0.7308*** 
(0.1232) 

R2 0.157 0.165 0.147 

NObs. 19,409,499 11,130,243 8,279,006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 10 
Auction Subsample Analysis: Price Improvements, Cross-Market Effects and Moneyness 

This table presents the regression results examining leverage effects on the price improvements of options orders that are not 
trading on their expiration day during the October 2022 sample period. The analyses focus exclusively on intervals that include at 
least one auction trade. The dependent variable, Price improvement, is defined as the difference between the quoted half-spread 
and the effective half-spread, measured in cents. OI (Order Imbalance) represents short-term inventory pressure on market 
makers. Moneyness is computed as the ln(Strike price/Stock price)/ √DTE, where DTE is the calendar days to expiration. PFOF-
DMMP is a binary variable equal to one if the exchange has Designated Market Maker (DMM) preferencing and uses a payment 
for order flow pricing structure, and zero otherwise. AvgSize is the natural logarithm of the average trade size within the interval. 
Call is a dummy variable equal to one if the option is a call. MCAP is the natural logarithm of the market capitalization of the 
underlying stock, and StockVol is the natural logarithm of the daily traded volume of the underlying stock. Tick is a binary variable 
equal to one if the average trade price of the option series within the interval is $3.00 or greater. OVOI is the order imbalance on 
other exchanges. SAME is a binary variable set to one if the net order flow across other venues is in the same direction as the 
order flow on the local exchange in the time interval. StockSpread is the average spread of the underlying stock within the interval. 
The inverse of the average option quote midpoint is also included in the analyses. All specifications include fixed effects for the 
underlying stock, day, and exchange. Standard errors are double-clustered at the option and day levels and are reported in 
parentheses. ***p < 0.01, **p < 0.05, and *p < 0.10 

VARIABLES    All     Calls    Puts 

Moneyness 5.4759*** 
(0.9173) 

-6.2271*** 
(1.4644) 

9.3966*** 
(2.6096) 

OI -0.0365*** 
(0.0113) 

-0.0604*** 
(0.0223) 

-0.0129 
(0.0193) 

SAME -1.1340*** 
(0.0404) 

-1.0657*** 
(0.0508) 

-1.1967*** 
(0.0553) 

OVOI -0.0203** 
(0.0101) 

-0.0106 
(0.0146) 

-0.0256 
(0.0161) 

SAME x OI x OVOI 0.3978*** 
(0.0323) 

0.3376*** 
(0.0430) 

0.4879*** 
(0.0557) 

OI x PFOF-DMMP  0.0317** 
(0.0124) 

0.0643*** 
(0.0209) 

-0.0029 
(0.0177) 

AvgSize 0.0882*** 
(0.0086) 

0.0709*** 
(0.0110) 

0.1136*** 
(0.0133) 

Call -0.4764*** 
(0.0796) 

  

AvgIVOL 1.0467*** 
(0.1682) 

1.5036*** 
(0.2262) 

1.2400*** 
(0.1936) 

AvgDelta 13.1969*** 
(0.4537) 

11.3060*** 
(0.5629) 

13.5207*** 
(0.7323) 

AvgGamma -4.7083*** 
(0.3469) 

-4.2508*** 
(0.3316) 

-7.1708*** 
(0.5231) 

AvgVega 37.8391*** 
(1.0529) 

40.6023*** 
(1.0932) 

33.6691*** 
(1.5673) 

1/OptionMidpoint 0.0668*** 
(0.0031) 

0.0849*** 
(0.0056) 

0.0661*** 
(0.0081) 

MCAP 1.8624*** 
(0.3440) 

1.5122*** 
(0.3004) 

2.5110*** 
(0.6036) 

Tick -0.6573*** 
(0.1407) 

-0.6472*** 
(0.1442) 

-0.6881*** 
(0.1892) 

StockSpread 12.2991*** 
(1.0028) 

15.2006*** 
(1.8740) 

9.9229*** 
(0.9157) 



StockVol 0.8053*** 
(0.0922) 

0.7981*** 
(0.0999) 

0.8006*** 
(0.1044) 

R2 0.245 0.257 0.228 

NObs. 5,151,514 3,118,538 2,032,688 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 



Probability of Auctions, Cross-Market Effects and Order Imbalance 
This table presents the regression results examining order imbalance and cross-market effects on the probability of price 
improvement auction occurring during the October 2022 sample period. Regression data is trade data from exchanges that have 
price improvement auction mechanisms. The dependent variable, Auction, is a binary variable equal to one if at least one trade 
within the interval was executed in a single- or multi-leg price improvement auction, and zero otherwise. OI (Order Imbalance) 
represents short-term inventory pressure on market makers. Moneyness is computed as the ln(Strike price/Stock price)/ √DTE, 
where DTE is the calendar days to expiration. PFOF-DMMP is a binary variable equal to one if the exchange has Designated Market 
Maker (DMM) preferencing and uses a payment for order flow pricing structure, and zero otherwise. AvgSize is the natural 
logarithm of the average trade size within the interval. Call is a dummy variable equal to one if the option is a call. MCAP is the 
natural logarithm of the market capitalization of the underlying stock, and StockVol is the natural logarithm of the daily traded 
volume of the underlying stock. Tick is a binary variable equal to one if the average trade price of the option series within the 
interval is $3.00 or greater. OVOI is the order imbalance on other exchanges. SAME is a binary variable set to one if the net order 
flow across other venues is in the same direction as the order flow on the local exchange in the time interval. The inverse of the 
average option and underlying stock quote midpoint is also included in the analyses. OptionSpread and StockSpread are the 
average spreads of options and their underlying stock within the interval. All specifications include fixed effects for the underlying 
stock, day, and exchange. Standard errors are double-clustered at the option and day levels and are reported in parentheses. ***p 
< 0.01, **p < 0.05, and *p < 0.10 

VARIABLES    (1)     (2)  (3)    (4) 

OI -0.0059*** 
(0.0006) 

-0.0041*** 
(0.0006) 

-0.0036*** 
(0.0005) 

-0.0018*** 
(0.0005) 

Auctiont-1    0.2196*** 
(0.0035) 

SAME   0.0010 
(0.0025) 

0.0072*** 
(0.0019) 

OVOI   -0.0013*** 
(0.0004) 

0.0001 
(0.0004) 

SAME x OI x OVOI   -0.0832*** 
(0.0027) 

-0.0712*** 
(0.0021) 

OI x PFOF-DMMP   -0.0031*** 
(0.0005) 

-0.0030*** 
(0.0005) 

-0.0017*** 
(0.0006) 

AvgSize -0.0174*** 
(0.0010) 

-0.0174*** 
(0.0010) 

-0.0166*** 
(0.0010) 

-0.0179*** 
(0.0011) 

Call 0.0318*** 
(0.0020) 

0.0318*** 
(0.0020) 

0.0303*** 
(0.0020) 

0.0223*** 
(0.0017) 

√DTE -0.0086*** 
(0.0003) 

-0.0086*** 
(0.0003) 

-0.0082*** 
(0.0003) 

-0.0076*** 
(0.0004) 

AvgDelta -0.1178*** 
(0.0047) 

-0.1177*** 
(0.0047) 

-0.1178*** 
(0.0045) 

-0.0772*** 
(0.0039) 

AvgGamma 0.0578*** 
(0.0053) 

0.0579*** 
(0.0053) 

0.0609*** 
(0.0051) 

0.0420*** 
(0.0063) 

AvgVega -0.0525*** 
(0.0054) 

-0.0525*** 
(0.0054) 

-0.0505*** 
(0.0052) 

-0.0410*** 
(0.0071) 

1/OptionMidpoint -0.0005*** 
(0.0001) 

-0.0005*** 
(0.0001) 

-0.0004*** 
(0.0001) 

0.0001 
(0.0002) 

OptionSpread 0.0000 
(0.0034) 

0.0000 
(0.0034) 

-0.0026 
(0.0034) 

-0.0130*** 
(0.0041) 

MCAP -0.0490*** 
(0.0083) 

-0.0490*** 
(0.0083) 

-0.0470*** 
(0.0078) 

-0.0179*** 
(0.0011) 

Tick -0.0447*** 
(0.0024) 

-0.0447*** 
(0.0024) 

-0.0440*** 
(0.0022) 

0.0223*** 
(0.0017) 

1/StockMidpoint 0.0164 
(0.0135) 

0.0164 
(0.0135) 

0.0159 
(0.0130) 

-0.0076*** 
(0.0004) 



StockSpread 0.0027 
(0.0039) 

0.0027 
(0.0039) 

0.0025 
(0.0037) 

-0.0772*** 
(0.0039) 

R2 0.348 0.348 0.354 0.398 

NObs. 11,877,865 11,877,865 11,877,865 7,513,323 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 



PFOF-DMMP Exchanges: Probability of Auctions, Cross-Market Effects and Order Imbalance 
This table presents the regression results examining order imbalance and cross-market effects on the probability of price 
improvement auction occurring during the October 2022 sample period. Regression data is trade data from exchanges that have 
price improvement auction mechanisms, uses DMM preferencing and utilize PFOF pricing model. The dependent variable, 
Auction, is a binary variable equal to one if at least one trade within the interval was executed in a single- or multi-leg price 
improvement auction, and zero otherwise. OI (Order Imbalance) represents short-term inventory pressure on market makers. 
Moneyness is computed as the ln(Strike price/Stock price)/ √DTE, where DTE is the calendar days to expiration. PFOF-DMMP is a 
binary variable equal to one if the exchange has Designated Market Maker (DMM) preferencing and uses a payment for order 
flow pricing structure, and zero otherwise. AvgSize is the natural logarithm of the average trade size within the interval. Call is a 
dummy variable equal to one if the option is a call. MCAP is the natural logarithm of the market capitalization of the underlying 
stock, and StockVol is the natural logarithm of the daily traded volume of the underlying stock. Tick is a binary variable equal to 
one if the average trade price of the option series within the interval is $3.00 or greater. OVOI is the order imbalance on other 
exchanges. SAME is a binary variable set to one if the net order flow across other venues is in the same direction as the order 
flow on the local exchange in the time interval. The inverse of the average option and underlying stock quote midpoint is also 
included in the analyses. OptionSpread and StockSpread are the average spreads of options and their underlying stock within the 
interval. All specifications include fixed effects for the underlying stock, day, and exchange. Standard errors are double-clustered 
at the option and day levels and are reported in parentheses. ***p < 0.01, **p < 0.05, and *p < 0.10 

VARIABLES    (1)  (2)    (3) 

OI -0.0066*** 
(0.0007) 

-0.0059*** 
(0.0006) 

-0.0032*** 
(0.0006) 

Auctiont-1   0.1967*** 
(0.0030) 

SAME  -0.0078** 
(0.0033) 

-0.0012 
(0.0026) 

OVOI  -0.0019*** 
(0.0006) 

-0.0000 
(0.0006) 

SAME x OI x OVOI  -0.1166*** 
(0.0033) 

-0.0974*** 
(0.0024) 

AvgSize -0.0188*** 
(0.0018) 

-0.0178*** 
(0.0018) 

-0.0199*** 
(0.0019) 

Call 0.0480*** 
(0.0028) 

0.0464*** 
(0.0028) 

0.0341*** 
(0.0025) 

√DTE -0.0129*** 
(0.0005) 

-0.0125*** 
(0.0005) 

-0.0120*** 
(0.0007) 

AvgDelta -0.1699*** 
(0.0058) 

-0.1681*** 
(0.0055) 

-0.1172*** 
(0.0052) 

AvgGamma 0.0788*** 
(0.0075) 

0.0873*** 
(0.0076) 

0.0617*** 
(0.0082) 

AvgVega -0.0780*** 
(0.0080) 

-0.0750*** 
(0.0079) 

-0.0553*** 
(0.0102) 

1/OptionMidpoint -0.0007*** 
(0.0002) 

-0.0007*** 
(0.0002) 

-0.0001 
(0.0002) 

OptionSpread 0.0257*** 
(0.0046) 

0.0203*** 
(0.0046) 

0.0108** 
(0.0049) 

MCAP -0.0674*** 
(0.0107) 

-0.0646*** 
(0.0102) 

-0.0608*** 
(0.0096) 

Tick -0.0633*** 
(0.0029) 

-0.0630*** 
(0.0028) 

-0.0509*** 
(0.0024) 

1/StockMidpoint 0.0065 
(0.0160) 

0.0050 
(0.0154) 

0.0090 
(0.0165) 

StockSpread -0.0001 
(0.0056) 

0.0023 
(0.0054) 

0.0201** 
(0.0085) 

R2 0.156 0.167 0.199 



NObs. 7,250,369 7,250,369 4,739,210 

 

 


