Chapter 16
Option Valuation

7.
\[d_1 = 0.3182 \quad N(d_1) = 0.6248 \]
\[d_2 = -0.0354 \quad N(d_2) = 0.4859 \]
\[Xe^{-rT} = 47.56 \]
\[C = S_0 N(d_1) - Xe^{-rT} N(d_2) = 8.13 \]

8.
P = $5.69
This value is from our Black-Scholes spreadsheet, but note that we could have derived the value from put-call parity:
\[P = C - S_0 + PV(X) = 8.13 - 50 + 47.56 = 5.69 \]

10.
 a.
 b.
 c.
 d.
 e.

12. Holding firm-specific risk constant, higher beta implies higher total stock volatility. Therefore, the value of the put option increases as beta increases.