Chapter 10
Solutions to Questions and Problems

1. \(R = .1133 \) or 11.33%

2. Dividend yield = .0169 or 1.69%
 Capital gains yield = .0964 or 9.64%

3. \(R = -.0675 \) or −6.75%
 Dividend yield = .0169 or 1.69%
 Capital gains yield = -.0843 or −8.43%

4.A. Total dollar return = $44
 The total percentage return of the bond is:
 \(R = .0393 \) or 3.93%

7. \[
\bar{X} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{[11 + .06 - .08 + .28 + .13]}{5} = .1000 \text{ or } 10.00\%
\]

\[
\bar{Y} = \frac{\sum_{i=1}^{N} y_i}{N} = \frac{[.36 - .07 + .21 - .12 + .43]}{5} = .1620 \text{ or } 16.20\%
\]

\[
s_X^2 = \frac{1}{N-1} \left(\sum_{i=1}^{N} (x_i - \bar{x})^2 \right)
\]

\[
s_X^2 = \frac{1}{5-1} \left((.11 - .100)^2 + (.06 - .100)^2 + (-.08 - .100)^2 + (.28 - .100)^2 + (.13 - .100)^2 \right) = .016850
\]

\[
s_Y^2 = \frac{1}{5-1} \left((.36 - .162)^2 + (-.07 - .162)^2 + (.21 - .162)^2 + (-.12 - .162)^2 + (.43 - .162)^2 \right) = .061670
\]

The standard deviation is the square root of the variance, so the standard deviation of each stock is:
\(s_X = .1298 \) or 12.98%
\(s_Y = .2483 \) or 24.83%
8.
 a. Large company stock average return = 3.24%
 T-bills average return = 6.55%
 b. Variance = 0.058136
 Standard deviation = 0.2411 or 24.11%
 Using the equation for variance, we find the variance for T-bills over this period was:
 Variance = 0.000153
 Standard deviation = 0.0124 or 1.24%
 c. Average observed risk premium = –3.32%
 Variance = 0.062078
 Standard deviation = 0.2440 or 24.40%
 d. Before the fact, for most assets the risk premium will be positive; investors demand
 compensation over and above the risk-free return to invest their money in the risky
 asset. After the fact, the observed risk premium can be negative if the asset’s nominal
 return is unexpectedly low, the risk-free return is unexpectedly high, or if some
 combination of these two events occurs.

9.
 a. Arithmetic average return = .0880 or 8.80%
 b. Variance = 0.023570
 Standard deviation = 0.1535 or 15.35%

10.
 a. \(\bar{r} = .0441 \) or 4.41%
 b. \(\bar{RP} = .0370 \) or 3.70%

11. \(r_f = .0086 \) or 0.86%
 And to calculate the average real risk premium, we can subtract the average risk-free rate
 from the average real return. So, the average real risk premium was:
 \(\bar{rp} = .0355 \) or 3.55%

13. \(P_t = \$163.51 \)
 There are no intermediate cash flows on a zero coupon bond, so the return is the capital
 gains, or:
 \(R = .0731 \) or 7.31%

14. \(R = .0137 \) or 1.37%
15. \(R = 0.0872 \) or 8.72%
 APR = 34.88%
 EAR = 0.3971 or 39.71%

19. \(R = 0.38 \) or 38%
 Variance = 0.049050
 Standard deviation = 0.2215 or 22.15%

20. Arithmetic average return = 0.0883 or 8.83%
 Geometric average return = 0.0769 or 7.69%

21. The return for each year is:
 \(R_1 = 0.1507 \) or 15.07%
 \(R_2 = 0.0554 \) or 5.54%
 \(R_3 = -0.0649 \) or -6.49%
 \(R_4 = 0.2026 \) or 20.26%
 \(R_5 = 0.2127 \) or 21.27%

 \(R_A = 0.1113 \) or 11.13%
 \(R_G = 0.1062 \) or 10.62%

23. \(P_1 = 1,047.67 \)
 \(R = 0.0964 \) or 9.64%

 And using the Fisher equation to find the real return, we get:
 \(r = 0.0462 \) or 4.62%